Abstract

We present a SESAM mode locked Yb:CALGO laser with a harmonic repetition rate to the 300th order pumped by a single-mode fiber coupled laser diode. By fine tuning the internal angle between the laser beam and the normal axis through the gain medium, at pump power of 1.2 W, an average output power of 132 mW is achieved with a pulse duration of 777.6 fs and a repetition rate of 22.4 GHz. The amplification effect over several tens of roundtrips induced Fabry-Perot filtering of the anti-reflection (AR) coated gain medium is analyzed. The modulation depth increases and the FWHM of a passband Δυcrystal decreases with increasing roundtrip numbers in the laser crystal. The intra-cavity pulse shaping mechanism with a comb filter caused by the amplified etalon effect of the AR coated laser crystal leads to the overall mode spacing equal to the free spectral range of the gain medium other than the laser cavity and results in the high repetition rate running.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser.

Keith G. Wilcox, Adrian H. Quarterman, Vasilis Apostolopoulos, Harvey E. Beere, Ian Farrer, David A. Ritchie, and Anne C. Tropper
Opt. Express 20(7) 7040-7045 (2012)

Modeling of mode locking in a laser with spatially separate gain media

R. M. Oldenbeuving, C. J. Lee, P. D. van Voorst, H. L. Offerhaus, and K.-J. Boller
Opt. Express 18(22) 22996-23008 (2010)

Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser

Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang
Opt. Lett. 37(4) 461-463 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  2. T. Tomaru and H. Petek, “Femtosecond Cr4+:YAG laser with an L-fold cavity operating at a 1.2-GHz repetition rate,” Opt. Lett. 25(8), 584–586 (2000).
    [Crossref] [PubMed]
  3. C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
    [Crossref] [PubMed]
  4. A. Bartels, T. Dekorsy, and H. Kurz, “Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy,” Opt. Lett. 24(14), 996–998 (1999).
    [Crossref] [PubMed]
  5. D. A. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14(2), 146–148 (1989).
    [Crossref] [PubMed]
  6. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [Crossref] [PubMed]
  7. K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “770 fs Harmonically and Regeneratively FM Mode-Locked Erbium Fiber Laser in L-Band,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM4L.2.
    [Crossref]
  8. L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
    [Crossref]
  9. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [Crossref]
  10. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
    [Crossref]
  11. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25(19), 1418–1420 (2000).
    [Crossref] [PubMed]
  12. T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
    [Crossref]
  13. W. Zhou, X. Fan, H. Xue, R. Xu, Y. Zhao, X. Xu, D. Tang, and D. Shen, “Stable passively harmonic mode-locking dissipative pulses in 2µm solid-state laser,” Opt. Express 25(3), 1815 (2017).
    [Crossref]
  14. H. M. Bensch, G. Herink, F. Kurtz, and U. Morgner, “Harmonically mode-locked Yb:CALGO laser oscillator,” Opt. Express 25(13), 14164–14172 (2017).
    [Crossref] [PubMed]
  15. M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
    [Crossref]
  16. S. Pekarek, C. Fiebig, M. C. Stumpf, A. E. H. Oehler, K. Paschke, G. Erbert, T. Südmeyer, and U. Keller, “Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW,” Opt. Express 18(16), 16320–16326 (2010).
    [Crossref] [PubMed]
  17. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
    [Crossref]
  18. J. Schröder, D. Alasia, T. Sylvestre, and S. Coen, “Dynamics of an ultrahigh-repetition-rate passively mode-locked Raman fiber laser,” J. Opt. Soc. Am. B 25(7), 1178–1186 (2008).
    [Crossref]
  19. J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
    [Crossref]
  20. G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993).
    [Crossref] [PubMed]
  21. Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
    [Crossref]
  22. T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
    [Crossref]
  23. C. Tian, S. Goldstein, and E. S. Fry, “On the etalon effect generated by a Pockels cell with high-quality antireflection coatings,” Appl. Opt. 39(10), 1600–1601 (2000).
    [Crossref] [PubMed]
  24. D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron. 6(11), 694–708 (1970).
    [Crossref]
  25. D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part II: Experimental results in a Nd: YAG laser with internal FM modulation,” IEEE J. Quantum Electron. 6(11), 709–715 (1970).
    [Crossref]
  26. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
    [Crossref]
  27. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  28. X. Dangpeng, W. Jianjun, L. Mingzhong, L. Honghuan, Z. Rui, D. Ying, D. Qinghua, H. Xiaodong, W. Mingzhe, D. Lei, and T. Jun, “Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems,” Opt. Express 18(7), 6621–6627 (2010).
    [Crossref] [PubMed]
  29. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, “Correlation of supermode noise of harmonically mode-locked lasers,” J. Opt. Soc. Am. B 24(7), 1490–1497 (2007).
    [Crossref]

2017 (3)

2014 (1)

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

2013 (1)

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

2010 (3)

2009 (2)

2008 (1)

2007 (2)

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, “Correlation of supermode noise of harmonically mode-locked lasers,” J. Opt. Soc. Am. B 24(7), 1490–1497 (2007).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

2001 (2)

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

2000 (3)

1999 (1)

1997 (2)

B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
[Crossref]

J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
[Crossref]

1994 (1)

T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
[Crossref]

1993 (2)

G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18(2), 107–109 (1993).
[Crossref] [PubMed]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

1989 (1)

1972 (1)

M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
[Crossref]

1970 (2)

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron. 6(11), 694–708 (1970).
[Crossref]

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part II: Experimental results in a Nd: YAG laser with internal FM modulation,” IEEE J. Quantum Electron. 6(11), 709–715 (1970).
[Crossref]

Alasia, D.

Amrani, F.

Bartels, A.

Becker, M. F.

M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
[Crossref]

Bensch, H. M.

Burdge, G. L.

J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
[Crossref]

Carruthers, T. F.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
[Crossref]

Chen, Y. F.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Coen, S.

Dangpeng, X.

Dekorsy, T.

Delfyett, P. J.

Dennis, M. L.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
[Crossref]

Diddams, S. A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Duling, I. N.

T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
[Crossref]

Erbert, G.

Fan, X.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fiebig, C.

Fry, E. S.

Gee, S.

Goldhar, J.

J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
[Crossref]

Goldstein, S.

Gray, S.

Grelu, P.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Grudinin, B.

Haboucha, A.

Harvey, G. T.

Haus, H. A.

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Herink, G.

Honghuan, L.

Huang, G. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Ippen, E. P.

Ishii, M.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Jianjun, W.

Jun, T.

Kamei, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Keller, U.

Komarov, A.

König, F.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Korolkova, N.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Kuizenga, D.

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron. 6(11), 694–708 (1970).
[Crossref]

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part II: Experimental results in a Nd: YAG laser with internal FM modulation,” IEEE J. Quantum Electron. 6(11), 709–715 (1970).
[Crossref]

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
[Crossref]

Kurtz, F.

Kurz, H.

Lam, P. K.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Leaird, D. E.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Leblond, H.

Lei, D.

Leuchs, G.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Li, L.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Li, X.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Liang, H. C.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Luo, S. Y.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Mao, D.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Miller, D. A.

Mingzhe, W.

Mingzhong, L.

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Mollenauer, L. F.

Morgner, U.

Oehler, A. E. H.

Okamoto, K.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Ozharar, S.

Paschke, K.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Pekarek, S.

Petek, H.

Qinghua, D.

Quinlan, F.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Rui, Z.

Salhi, M.

Sanchez, F.

Schröder, J.

Shen, D.

Shen, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Si, J.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Siegman, A.

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part II: Experimental results in a Nd: YAG laser with internal FM modulation,” IEEE J. Quantum Electron. 6(11), 709–715 (1970).
[Crossref]

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron. 6(11), 694–708 (1970).
[Crossref]

Siegman, E.

M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
[Crossref]

Silberhorn, C.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Stumpf, M. C.

Su, K. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Su, Y.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Südmeyer, T.

Sugita, A.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Sylvestre, T.

Sysoliatin, A.

Tang, C. Y.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Tang, D.

Tian, C.

Tomaru, T.

Tsou, C. H.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Wang, X.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Wang, Y.

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

Weiner, A. M.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

Weiss, O.

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Wey, J. S.

J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
[Crossref]

Wong, W. S.

Wu, T. W.

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Xia, Y. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Xiaodong, H.

Xu, R.

Xu, X.

Xue, H.

Yang, X. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Ying, D.

Yu, C. X.

Zhan, L.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhang, Z. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhao, Y.

Zhou, W.

Zhuang, W. Z.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

T. F. Carruthers, I. N. Duling, and M. L. Dennis, “Active-passive modelocking in a single-polarisation erbium fibre laser,” Electron. Lett. 30(13), 1051–1053 (1994).
[Crossref]

IEEE J. Quantum Electron. (3)

M. F. Becker, D. J. Kuizenga, and E. Siegman, “Harmonic Mode Locking o f the Nd:YAG Laser,” IEEE J. Quantum Electron. 8(8), 687–693 (1972).
[Crossref]

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron. 6(11), 694–708 (1970).
[Crossref]

D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part II: Experimental results in a Nd: YAG laser with internal FM modulation,” IEEE J. Quantum Electron. 6(11), 709–715 (1970).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Li, Y. Su, Y. Wang, X. Wang, Y. Wang, X. Li, D. Mao, and J. Si, “Femtosecond passively Er-doped mode-locked fiber laser with WS2 solution saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 23(1), 44–49 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high-repetition-rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photonics Technol. Lett. 13(3), 221–223 (2001).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. S. Wey, J. Goldhar, and G. L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry-Perot filters,” J. Lightwave Technol. 15(7), 1171–1180 (1997).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

T. W. Wu, C. H. Tsou, C. Y. Tang, H. C. Liang, and Y. F. Chen, “A high-power harmonically self-mode-locked Nd: YVO4 1.34-μm laser with repetition rate up to 32.1 GHz,” Laser Phys. 24(4), 045803 (2014).
[Crossref]

Laser Phys. Lett. (2)

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb: YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett. 10(1), 015803 (2013).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

C. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86(19), 4267–4270 (2001).
[Crossref] [PubMed]

Science (1)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[Crossref] [PubMed]

Other (1)

K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “770 fs Harmonically and Regeneratively FM Mode-Locked Erbium Fiber Laser in L-Band,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper SM4L.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Measured reflectivity of AR coating of Yb:CALGO laser crystal, R~0.2% @ 1050 nm.
Fig. 3
Fig. 3 Measured pulse trains (a) and laser emission spectrum (b) in the regime of fundamental mode locking
Fig. 4
Fig. 4 Pump power dependent output power curve
Fig. 5
Fig. 5 Measured pulse trains from oscilloscope (a) and autocorrelator (b), laser emission spectrum (c) in the regime of harmonic mode locking.
Fig. 6
Fig. 6 Laser crystal tilted angle dependent laser performance.
Fig. 7
Fig. 7 Calculated laser emission spectrum (a) without etalon effect; (b) with weak etalon effect: - black curve 1 round-trip, - blue curve 10 round-trips, - red curve 150 round-trips.
Fig. 8
Fig. 8 Numerically calculated roundtrip number dependent FWHM of a passband (-■ -) and modulation depth (-●-) at center wavelength.
Fig. 9
Fig. 9 Laser cavity mode frequencies (blue line) superimposed upon the transmission function of the laser crystal etalon (black line): central laser cavity mode aligned with the peak etalon mode by fine tuning the laser cavity length.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T= ( T crystal G) 2N
T crystal =1/( 1+F sin 2 δ 2 )
G=exp[ (λ λ 0 ) 2 2Δ λ 2 ]
F=4R/ (1R) 2
δ=4πnd/ λ 0

Metrics