Abstract

We present a convenient photoalignment approach to fabricate rewritable fingerprint textures with designed geometrical patterns based on methyl red doped cholesteric liquid crystals (MDCLCs). MDCLC systems with/without nanoparticles of polyhedral oligomeric silsesquioxanes (POSS) were employed to realize two types of sophisticated binary patterns, respectively. Based on the understanding of involved mechanisms related to boundary conditions and middle-layer theory, we demonstrated the precise manipulation of fingerprint patterns by varying the fingerprint grating vectors in different domains. Notably, the hybrid-aligned liquid crystal configuration induced by POSS nanoparticles, which leads to the electrically rotatable grating, can be converted into the planar-aligned configuration by the adsorption of photoexcited methyl red molecules onto the indium-tin-oxide (ITO) surface. In this manner, the dynamic voltage-dependent behavior of fingerprint gratings is altered from the rotation mode (R-mode) to the on-off mode (O-mode).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization

Wen-Song Li, Ling-Ling Ma, Ling-Li Gong, Sen-Sen Li, Can Yang, Bin Luo, Wei Hu, and Lu-Jian Chen
Opt. Mater. Express 6(1) 19-28 (2016)

Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes

Wen-Song Li, Yuan Shen, Zhi-Jie Chen, Qian Cui, Sen-Sen Li, and Lu-Jian Chen
Appl. Opt. 56(3) 601-606 (2017)

Dual liquid crystal alignment configuration based on nanoparticle-doped polymer films

Andy Ying-Guey Fuh, Chen-Yu Huang, Cheng-Kai Liu, Yuan-Di Chen, and Ko-Ting Cheng
Opt. Express 19(12) 11825-11831 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  2. R. Stannarius, “Liquid crystals: More than display fillings,” Nat. Mater. 8(8), 617–618 (2009).
    [Crossref] [PubMed]
  3. H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
    [Crossref] [PubMed]
  4. W. S. Li, Y. Shen, Z. J. Chen, Q. Cui, S. S. Li, and L. J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
    [Crossref] [PubMed]
  5. W. Lee and H. C. Chen, “Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes,” Nanotechnology 14(2), 987–990 (2003).
    [Crossref]
  6. T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
    [Crossref]
  7. Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  8. H. T. Wang, J. D. Lin, C. R. Lee, and W. Lee, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).
    [Crossref] [PubMed]
  9. J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
    [Crossref] [PubMed]
  10. P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
    [Crossref]
  11. A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jap. J. App. Phy 41(1), 211–218 (2002).
    [Crossref]
  12. W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
    [Crossref]
  13. K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
    [Crossref]
  14. J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
    [Crossref]
  15. W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
    [Crossref]
  16. H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
    [Crossref]
  17. W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
    [Crossref]
  18. C. H. Lin, R. H. Chiang, S. H. Liu, C. T. Kuo, and C. Y. Huang, “Rotatable diffractive gratings based on hybrid-aligned cholesteric liquid crystals,” Opt. Express 20(24), 26837–26844 (2012).
    [Crossref] [PubMed]
  19. D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
    [Crossref]
  20. C. T. Kuo, R. H. Chiang, C. Y. Wang, P. H. Hsieh, Y. T. Lin, C. H. Lin, and C. Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
    [Crossref] [PubMed]
  21. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  22. A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
    [Crossref]
  23. H. K. Bisoyi and Q. Li, “Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 55(9), 2994–3010 (2016).
    [Crossref] [PubMed]
  24. Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
    [Crossref] [PubMed]
  25. A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
    [Crossref]
  26. Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
    [Crossref] [PubMed]
  27. K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
    [Crossref] [PubMed]
  28. L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
    [PubMed]
  29. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
    [Crossref]
  30. L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
    [Crossref]
  31. K. Y. Yang and W. Lee, “Voltage-assisted photoaligning effect of an azo dye doped in a liquid crystal with negative dielectric anisotropy,” Opt. Express 18(19), 19914–19919 (2010).
    [Crossref] [PubMed]
  32. S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
    [Crossref]
  33. L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
    [Crossref]
  34. D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
    [Crossref] [PubMed]
  35. J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
    [Crossref]
  36. J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
    [Crossref]
  37. O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
    [Crossref]
  38. I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
    [Crossref] [PubMed]
  39. W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
    [Crossref] [PubMed]
  40. D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
    [Crossref]
  41. W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
    [Crossref]
  42. C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
    [Crossref] [PubMed]
  43. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [Crossref]
  44. W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
    [Crossref]
  45. J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
    [Crossref]
  46. V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).
  47. I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
    [Crossref]
  48. I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
    [Crossref]
  49. I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
    [Crossref]
  50. S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    [Crossref]
  51. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]

2018 (1)

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

2017 (6)

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

W. S. Li, Y. Shen, Z. J. Chen, Q. Cui, S. S. Li, and L. J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

2016 (6)

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
[Crossref] [PubMed]

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

H. K. Bisoyi and Q. Li, “Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 55(9), 2994–3010 (2016).
[Crossref] [PubMed]

2015 (4)

H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
[Crossref] [PubMed]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

2014 (3)

2012 (3)

2011 (3)

2010 (2)

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

K. Y. Yang and W. Lee, “Voltage-assisted photoaligning effect of an azo dye doped in a liquid crystal with negative dielectric anisotropy,” Opt. Express 18(19), 19914–19919 (2010).
[Crossref] [PubMed]

2009 (3)

R. Stannarius, “Liquid crystals: More than display fillings,” Nat. Mater. 8(8), 617–618 (2009).
[Crossref] [PubMed]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[Crossref] [PubMed]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

2008 (2)

D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
[Crossref]

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

2007 (1)

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

2005 (1)

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

2004 (2)

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

2003 (1)

W. Lee and H. C. Chen, “Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes,” Nanotechnology 14(2), 987–990 (2003).
[Crossref]

2002 (2)

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jap. J. App. Phy 41(1), 211–218 (2002).
[Crossref]

2000 (1)

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

1999 (1)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

1998 (2)

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
[Crossref] [PubMed]

1997 (1)

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

1996 (2)

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[Crossref]

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

1979 (1)

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

1973 (1)

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

1971 (1)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Banji, O.

D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
[Crossref]

Baudry, J.

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

Belyaev, S. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

Belyaev, V. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

Bisoyi, H. K.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 55(9), 2994–3010 (2016).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Bobrovsky, A.

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

Bos, P. J.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Brazovskaia, M.

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

Bunning, T. J.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Cai, Z. P.

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Carbone, G.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Chang, Z. N.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Chen, C. W.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chen, C. Y.

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

Chen, F. C.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

Chen, H. C.

W. Lee and H. C. Chen, “Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes,” Nanotechnology 14(2), 987–990 (2003).
[Crossref]

Chen, L. J.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

W. S. Li, Y. Shen, Z. J. Chen, Q. Cui, S. S. Li, and L. J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Chen, P.

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Chen, S. H.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

Chen, T. J.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

Chen, W. H.

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

Chen, W. Z.

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[Crossref] [PubMed]

Chen, Y. Y.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Chen, Z. J.

Cheng, K. T.

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Cheng, W. H.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Chi, L. F.

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Chiang, R. H.

Chigrinov, V.

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

Cipparrone, G.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Cui, Q.

Cui, Z. Q.

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Dozov, I.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

Duan, W.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

Fan, B.

Fan, X. Y.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Fu, T. L.

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Fuh, A. Y.

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Fuh, A. Y.-G.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jap. J. App. Phy 41(1), 211–218 (2002).
[Crossref]

Gandhi, J. V.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Ge, S. J.

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Genack, A. Z.

Giocondo, M.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Gong, L. L.

Grebenkin, M. F.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

Gvozdovskyy, I.

I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
[Crossref]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

Hanna, J.

H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
[Crossref] [PubMed]

Helfrich, W.

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Hsiao, Y. C.

Hsieh, P. H.

Hu, W.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Huang, C. Y.

Huang, J. C.

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

Huang, K. C.

Huang, W. B.

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Hung, W. C.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Hurault, J. P.

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

Iino, H.

H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
[Crossref] [PubMed]

Jau, H. C.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Jeng, S. C.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Ji, W.

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Jiang, I. M.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Karn, A.

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

Kasyanyuk, D.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Kopp, V. I.

Kuo, C. T.

Kuo, C. W.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Lai, T. S.

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

Lai, Y. C.

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

Lamarque-Forget, S.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

Lavrentovich, O. D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Lee, C. R.

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

H. T. Wang, J. D. Lin, C. R. Lee, and W. Lee, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).
[Crossref] [PubMed]

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Lee, K. L.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

Lee, M. J.

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

Lee, S. S.

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Lee, T. H.

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

Lee, W.

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

K. C. Huang, Y. C. Hsiao, I. V. Timofeev, V. Y. Zyryanov, and W. Lee, “Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal,” Opt. Express 24(22), 25019–25025 (2016).
[Crossref] [PubMed]

H. T. Wang, J. D. Lin, C. R. Lee, and W. Lee, “Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer,” Opt. Lett. 39(12), 3516–3519 (2014).
[Crossref] [PubMed]

Y. C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

K. Y. Yang and W. Lee, “Voltage-assisted photoaligning effect of an azo dye doped in a liquid crystal with negative dielectric anisotropy,” Opt. Express 18(19), 19914–19919 (2010).
[Crossref] [PubMed]

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

W. Lee and H. C. Chen, “Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes,” Nanotechnology 14(2), 987–990 (2003).
[Crossref]

Lee, W. S.

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Lejcek, L.

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

Li, Q.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 55(9), 2994–3010 (2016).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Li, S. S.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W. S. Li, Y. Shen, Z. J. Chen, Q. Cui, S. S. Li, and L. J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

Li, W. S.

Li, Y.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
[Crossref] [PubMed]

Liang, X.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

Liao, C. C.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Lin, C. H.

Lin, J. D.

Lin, T. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[Crossref] [PubMed]

Lin, Y. T.

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

C. T. Kuo, R. H. Chiang, C. Y. Wang, P. H. Hsieh, Y. T. Lin, C. H. Lin, and C. Y. Huang, “Electrically switchable cholesteric gratings based on slit electrodes,” Opt. Express 22(8), 9759–9763 (2014).
[Crossref] [PubMed]

Liu, J. H.

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

Liu, S. H.

Liu, T. K.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Lu, Y. Q.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Luo, B.

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Ma, L. L.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

W. S. Li, L. L. Ma, L. L. Gong, S. S. Lee, C. Yang, B. Luo, W. Hu, and L. J. Chen, “Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization,” Opt. Mater. Express 6(1), 19–28 (2016).
[Crossref]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Martinot-Lagarde, P.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

Mazzulla, A.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Mi, X. D.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Mo, T. S.

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Oswald, P.

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

Pagliusi, P.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Pirkl, S.

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

Podolskyy, D.

D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
[Crossref]

Polossat, E.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

Provenzano, C.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Qian, H.

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Reshetnyak, V.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Reznikov, Y.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Rosenblatt, C.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Rudquist, P.

D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
[Crossref]

Ryabchun, A.

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

Schadt, M.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[Crossref]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[Crossref]

Seiberle, H.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[Crossref]

Serbina, M.

Shen, D.

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Shen, Y.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W. S. Li, Y. Shen, Z. J. Chen, Q. Cui, S. S. Li, and L. J. Chen, “Demonstration of patterned polymer-stabilized cholesteric liquid crystal textures for anti-counterfeiting two-dimensional barcodes,” Appl. Opt. 56(3), 601–606 (2017).
[Crossref] [PubMed]

Shibaev, V.

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

Shiyanovskii, S. V.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Stannarius, R.

R. Stannarius, “Liquid crystals: More than display fillings,” Nat. Mater. 8(8), 617–618 (2009).
[Crossref] [PubMed]

Stoenescu, D. N.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

Stumpe, J.

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

Su, M. T.

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

Subacius, D.

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

Syed, I. M.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Tang, C. Y.

Tang, M. J.

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Timofeev, I. V.

Tsai, M. S.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Tsai, Y. T.

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Single-cell-gap transflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects,” Opt. Lett. 34(17), 2545–2547 (2009).
[Crossref] [PubMed]

Usui, T.

H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
[Crossref] [PubMed]

Vasnetsov, M.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

Vithana, H. K. M.

Voloschenko, D.

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Wang, C. Y.

Wang, H. L.

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Wang, H. T.

Wang, L.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Wen, B.

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

Wu, J. J.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

Wu, P. C.

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

Wu, S. T.

Wu, Y. S.

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

Xu, Y. C.

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

Yamaguchi, R.

Yan, J.

Yang, C.

Yang, D. K.

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Yang, K. Y.

Yao, I. A.

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

Yaroshchuk, O.

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

Yeh, P.

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

Yuan, C. L.

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Zheng, Z. G.

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

Zola, R. S.

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

Zyryanov, V. Y.

Adv. Mater. (2)

Z. G. Zheng, R. S. Zola, H. K. Bisoyi, L. Wang, Y. Li, T. J. Bunning, and Q. Li, “Controllable dynamic zigzag pattern formation in a soft helical superstructure,” Adv. Mater. 29(30), 1701903 (2017).
[Crossref] [PubMed]

L. L. Ma, M. J. Tang, W. Hu, Z. Q. Cui, S. J. Ge, P. Chen, L. J. Chen, H. Qian, L. F. Chi, and Y. Q. Lu, “Smectic layer origami via preprogrammed photoalignment,” Adv. Mater. 29(15), 1606671 (2017).
[PubMed]

Adv. Opt. Mater. (3)

L. L. Ma, S. S. Lee, W. S. Lee, W. Ji, B. Luo, Z. G. Zheng, Z. P. Cai, V. Chigrinov, Y. Q. Lu, W. Hu, and L. J. Chen, “Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals,” Adv. Opt. Mater. 3(12), 1691–1696 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch,” Adv. Opt. Mater. 3(9), 1273–1279 (2015).
[Crossref]

A. Ryabchun, A. Bobrovsky, J. Stumpe, and V. Shibaev, “Electroinduced diffraction gratings in cholesteric polymer with phototunable helix pitch,” Adv. Opt. Mater. 3(10), 1462–1469 (2015).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

H. K. Bisoyi and Q. Li, “Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures,” Angew. Chem. Int. Ed. Engl. 55(9), 2994–3010 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, P. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett. 77(25), 4124–4126 (2000).
[Crossref]

S. C. Jeng, C. W. Kuo, H. L. Wang, and C. C. Liao, “Nanoparticles-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

H. C. Jau, T. H. Lin, Y. Y. Chen, C. W. Chen, J. H. Liu, and A. Y.-G. Fuh, “Direction switching and beam steering of cholesteric liquid crystal gratings,” Appl. Phys. Lett. 100(13), 131909 (2012).
[Crossref]

D. Subacius, P. J. Bos, and O. D. Lavrentovich, “Switchable diffractive cholesteric gratings,” Appl. Phys. Lett. 71(10), 1350–1352 (1997).
[Crossref]

S. S. Li, Y. Shen, Z. N. Chang, W. S. Li, Y. C. Xu, X. Y. Fan, and L. J. Chen, “Dynamic cholesteric liquid crystal superstructures photoaligned by one step polarization holography,” Appl. Phys. Lett. 111(23), 231109 (2017).
[Crossref]

W. Z. Chen, Y. T. Tsai, and T. H. Lin, “Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye,” Appl. Phys. Lett. 94(20), 201114 (2009).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Dyes Pigments (1)

P. C. Wu, A. Karn, M. J. Lee, W. Lee, and C. Y. Chen, “Dye-liquid-crystal-based biosensing for quantitative protein assay,” Dyes Pigments 150(3), 73–78 (2018).
[Crossref]

J. Appl. Phys. (2)

W. C. Hung, W. H. Cheng, T. K. Liu, I. M. Jiang, M. S. Tsai, and P. Yeh, “Diffraction of cholesteric liquid crystal gratings probed by monochromatic light from 450 to 750 nm,” J. Appl. Phys. 104(7), 073106 (2008).
[Crossref]

I. M. Syed, G. Carbone, C. Rosenblatt, and B. Wen, “Planar degenerate substrate for micro- and nanopatterned nematic liquid-crystal cells,” J. Appl. Phys. 98(3), 034303 (2005).
[Crossref]

J. Chem. Phys. (2)

W. Helfrich, “Electrohydrodynamic and dielectric instabilities of cholesteric liquid crystals,” J. Chem. Phys. 55(2), 839–842 (1971).
[Crossref]

J. P. Hurault, “Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields,” J. Chem. Phys. 59(4), 2068–2075 (1973).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

W. B. Huang, C. L. Yuan, D. Shen, and Z. G. Zheng, “Dynamically manipulated lasing enabled by a reconfigured fingerprint texture of a cholesteric self-organized superstructure,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(28), 6923–6928 (2017).
[Crossref]

Jap. J. App. Phy (3)

A. Y.-G. Fuh, C. H. Lin, and C. Y. Huang, “Dynamic pattern formation and beam-steering characteristics of cholesteric gratings,” Jap. J. App. Phy 41(1), 211–218 (2002).
[Crossref]

K. L. Lee, J. J. Wu, T. J. Chen, Y. S. Wu, F. C. Chen, and S. H. Chen, “Brightness enhancement with a fingerprint chiral nematic liquid crystal,” Jap. J. App. Phy 50(3), 032601 (2011).
[Crossref]

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jap. J. App. Phy 41(11), L1318–L1320 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. H. Lee, W. H. Chen, M. T. Su, T. S. Lai, and W. Lee, “Photovoltaic and spectral properties of conjugated polymer poly(3-octyl-thiophene) doped with various acceptor materials,” Jpn. J. Appl. Phys. 49(8), 081601 (2010).
[Crossref]

Liq. Cryst. (3)

D. Podolskyy, O. Banji, and P. Rudquist, “Simple method for accurate measurements of the cholesteric pitch using a ‘stripe-wedge’ Grandjean-Cano cell,” Liq. Cryst. 35(7), 789–791 (2008).
[Crossref]

J. Baudry, M. Brazovskaia, L. Lejcek, P. Oswald, and S. Pirkl, “Arch-texture in cholesteric liquid crystals,” Liq. Cryst. 21(6), 893–901 (1996).
[Crossref]

I. Gvozdovskyy, “Influence of the anchoring energy on jumps of the period of stripes in thin planar cholesteric layers under the alternating electric field,” Liq. Cryst. 41(10), 1495–1504 (2014).
[Crossref]

Nanotechnology (1)

W. Lee and H. C. Chen, “Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes,” Nanotechnology 14(2), 987–990 (2003).
[Crossref]

Nat. Commun. (1)

H. Iino, T. Usui, and J. Hanna, “Liquid crystals for organic thin-film transistors,” Nat. Commun. 6, 6828 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

R. Stannarius, “Liquid crystals: More than display fillings,” Nat. Mater. 8(8), 617–618 (2009).
[Crossref] [PubMed]

Nature (2)

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381(6579), 212–215 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

I. A. Yao, Y. C. Lai, S. H. Chen, and J. J. Wu, “Relaxation of a field-unwound cholesteric liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5 Pt 1), 051705 (2004).
[Crossref] [PubMed]

C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo, and A. Y. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3 Pt 1), 031704 (2004).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. V. Gandhi, X. D. Mi, and D. K. Yang, “Effect of surface alignment layers on the configurational transitions in cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(6), 6761–6766 (1998).
[Crossref]

Polymers (Basel) (1)

L. L. Ma, W. Duan, M. J. Tang, L. J. Chen, X. Liang, Y. Q. Lu, and W. Hu, “Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film,” Polymers (Basel) 9(7), 295 (2017).
[Crossref]

Proc. SPIE (1)

O. D. Lavrentovich, S. V. Shiyanovskii, and D. Voloschenko, “Fast beam steering cholesteric diffractive devices,” Proc. SPIE 3787, 149–155 (1999).
[Crossref]

Sci. Rep. (2)

D. Kasyanyuk, P. Pagliusi, A. Mazzulla, V. Reshetnyak, Y. Reznikov, C. Provenzano, M. Giocondo, M. Vasnetsov, O. Yaroshchuk, and G. Cipparrone, “Light manipulation of nanoparticles in arrays of topological defects,” Sci. Rep. 6(1), 20742 (2016).
[Crossref] [PubMed]

J. C. Huang, Y. C. Hsiao, Y. T. Lin, C. R. Lee, and W. Lee, “Electrically switchable organo-inorganic hybrid for a white-light laser source,” Sci. Rep. 6(1), 28363 (2016).
[Crossref] [PubMed]

Sov. J. Exp. Theor. Phys. (1)

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instability of cholesteric liquid crystals in an electric field,” Sov. J. Exp. Theor. Phys. 50, 994 (1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic LC configurations of (a) Sample I processed via the two-step photoalignment and (b) Sample II processed via the single-step photoalignment. (c) The top view of the twisted planar geometry after photoalignment. (MR and PI represent methyl red and polyimide, respectively)
Fig. 2
Fig. 2 The crossed POM images of Sample I with various geometrical patterns. One-dimensional periodic stripes and the enlarged details in the white rectangle region with voltages of (a) 0 V and (b) 3.5V. (c) Two-dimensional geometric patterns with variable grating vectors, in which the insets detail the fingerprint textures in white rectangle regions and the grating directions with respect to the negative x-axis.
Fig. 3
Fig. 3 The texture evolution of Sample II observed via a POM with voltages of (a) 0 V, (b) 1.0 V, (c) 1.5 V, (d) 2.0 V, (e) 3.0 V and (f) 4.0 V after the single-step photoalignment. The left parts in figures were unexposed and the right parts were exposed.
Fig. 4
Fig. 4 Diffraction behavior of Sample II photoaligned with checkerboard patterns and the voltage dependence of the direction angle of grating vector β with respect to the horizontal axis. The insets (I, II, III…IX, X) show the corresponding diffraction patterns with increasing voltages. The insets (a) and (b) present the POM images of Sample II with alternating hybrid and planar aligned checkerboard patterns, corresponding to R-Mode (2V) and O-Mode gratings (4V) respectively. (HBA and PA represent hybrid and planar alignments, respectively)
Fig. 5
Fig. 5 (a) The POM image of checkerboard-patterned Sample I at a voltage of 3.5V. (b) The enlarged detail in the white rectangle region in (a) which is corresponding to the boundary of developable-modulation-type fingerprint and planar texture. (c) The diffraction pattern of Sample I with checkerboard pattern at 3.5V. (d) Voltage-dependent transmittance of Sample I and Sample II and the normalized power of light scattering, R-Mode and O-Mode diffraction, obtained by the peaks-fitting simulation of Sample II.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V th 2 =8 d 3 π 3 (6 K 22 K 33 ) 0.5 /ΔεP ,

Metrics