Abstract

NiO, a 3d transition-metal oxide with the strong electron correlation, has attracted great physical attention due to the spin-orbit splitting of 3d electrons. By taking advantage of electron transition process originated from 3d spin-orbit splitting, it may be applied to many photonics areas by linear or nonlinear optical response. To further broaden the photonics applications of NiO, we originally explore the nonlinear optical response, saturable absorption, during the electronic transition due to 3d spin-orbit splitting under a strong optical field and successfully applied in the ultrafast photonics as a mode-locker for the generation of visible laser pulses, which is the result of dynamic balancing process by the electron transition arising from ground state (3A2g) to excited state (1Eg) of spin-orbit splitting in the Ni2+ 3d configurations. With the NiO nanosheet film for saturable absorption, we experimentally realize a pulsed visible laser at a wavelength of 640.3 nm for the first time to our knowledge. These results indicate that the study of electron transition process generated by 3d spin-orbit splitting in 3d transition-metal oxides should be helpful for the development of ultrafast photonics and related devices design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus

Shunbin Lu, Yanqi Ge, Zhengbo Sun, Zongyu Huang, Rui Cao, Chujun Zhao, Shuangchun Wen, Dianyuan Fan, Jianqing Li, and Han Zhang
Photon. Res. 4(6) 286-292 (2016)

Reversal in optical nonlinearities of Bi2Se3 nanosheets dispersion influenced by resonance absorption

Si Xiao, Qi Fan, Ying Ma, Qian Zhao, Gang Wang, Hao Xin, Yinglin Qin, Xuefeng Yu, and Jun He
Opt. Express 27(15) 21741-21749 (2019)

Broadband third order nonlinear optical responses of bismuth telluride nanosheets

Lili Miao, Jun Yi, Qingkai Wang, Dong Feng, Hairong He, Shunbin Lu, Chujun Zhao, Han Zhang, and Shuangchun Wen
Opt. Mater. Express 6(7) 2244-2251 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
    [Crossref]
  2. B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
    [Crossref]
  3. X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
    [Crossref] [PubMed]
  4. V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
    [Crossref]
  5. L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
    [Crossref]
  6. H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
    [Crossref]
  7. G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
    [Crossref] [PubMed]
  8. Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288(5465), 462–468 (2000).
    [Crossref] [PubMed]
  9. W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
    [Crossref] [PubMed]
  10. R. J. Powell and W. E. Spicer, “Optical properties of NiO and CoO,” Phys. Rev. B 2(6), 2182–2193 (1970).
    [Crossref]
  11. O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
    [Crossref]
  12. D. Adler and B. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
    [Crossref]
  13. J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett. 83(9), 1834–1837 (1999).
    [Crossref]
  14. S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
    [Crossref] [PubMed]
  15. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
    [Crossref] [PubMed]
  16. S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
    [Crossref]
  17. B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
    [Crossref]
  18. N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
    [Crossref]
  19. L. A. Gómez, C. B. de Araújo, L. M. Rossi, S. H. Masunaga, and R. F. Jardim, “Third-order nonlinearity of nickel oxide nanoparticles in toluene,” Opt. Lett. 32(11), 1435–1437 (2007).
    [Crossref] [PubMed]
  20. B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
    [Crossref]
  21. Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
    [Crossref] [PubMed]
  22. R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
    [Crossref]
  23. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
    [Crossref] [PubMed]
  24. B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
    [Crossref]
  25. K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
    [Crossref]
  26. W. Low, “Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields,” Phys. Rev. 109(2), 247–255 (1958).
    [Crossref]
  27. S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
    [Crossref]
  28. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref] [PubMed]
  29. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
    [Crossref]
  30. V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
    [Crossref]
  31. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
    [Crossref]
  32. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
    [Crossref] [PubMed]
  33. X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
    [Crossref] [PubMed]
  34. Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
    [Crossref]

2017 (2)

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
[Crossref] [PubMed]

2016 (3)

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref] [PubMed]

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

2015 (3)

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

2014 (2)

L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39(24), 6939–6941 (2014).
[Crossref] [PubMed]

2013 (4)

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

2012 (3)

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

2010 (1)

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

2008 (3)

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

2007 (2)

L. A. Gómez, C. B. de Araújo, L. M. Rossi, S. H. Masunaga, and R. F. Jardim, “Third-order nonlinearity of nickel oxide nanoparticles in toluene,” Opt. Lett. 32(11), 1435–1437 (2007).
[Crossref] [PubMed]

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

2004 (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
[Crossref]

2003 (1)

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
[Crossref] [PubMed]

2001 (1)

V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
[Crossref]

2000 (2)

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288(5465), 462–468 (2000).
[Crossref] [PubMed]

1999 (1)

J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett. 83(9), 1834–1837 (1999).
[Crossref]

1992 (1)

W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
[Crossref] [PubMed]

1984 (1)

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

1970 (2)

R. J. Powell and W. E. Spicer, “Optical properties of NiO and CoO,” Phys. Rev. B 2(6), 2182–2193 (1970).
[Crossref]

D. Adler and B. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
[Crossref]

1958 (1)

W. Low, “Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields,” Phys. Rev. 109(2), 247–255 (1958).
[Crossref]

Abe, T.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Adler, D.

D. Adler and B. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
[Crossref]

Ahn, Y. H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Alouani, M.

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

Bek, R.

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

Bengone, O.

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

Blau, W. J.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Blochl, P.

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

Borstel, G.

W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
[Crossref] [PubMed]

Byzov, I. V.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Chang, C.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

Chang, S.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Chan-Park, M. B.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Chen, G.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Chen, H. R.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

Chen, P.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Chen, W. Y.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Chen, Y.

Cho, W. B.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Chougule, M. A.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Claverie, J.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

de Araújo, C. B.

Dong, N.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

Dong, X. C.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Druzhinin, A. V.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Feinleib, B.

D. Adler and B. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
[Crossref]

Feng, Y.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Fukuda, S.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Gao, T. T.

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

Gaponenko, M.

Godse, P. R.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Gómez, L. A.

Griebner, U.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
[Crossref]

Gruzdev, N. B.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Gu, B.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Guina, M.

Hao, P.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Hariharana, S.

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

Härkönen, A.

Haunert, L.

W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
[Crossref] [PubMed]

He, J.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Heuer, A.

Hirsch, J. E.

J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett. 83(9), 1834–1837 (1999).
[Crossref]

Hoa, L. T.

L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
[Crossref]

Hsieh, W. F.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

Huang, W.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Huang, Y. X.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Huber, G.

Hugel, J.

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

Hur, S. H.

L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
[Crossref]

Jardim, R. F.

Jetter, M.

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

Ji, S.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Ji, W.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Jing, Y.

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

Kahle, H.

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

Karthikeyan, B.

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

Kiibler, J.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

Kim, G. A.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Kim, K.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Kong, X. Z.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Kränkel, C.

Kurennykh, T. E.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Lee, S.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Leinonen, T.

Li, X.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Li, Y.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

Lim, H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Liu, C. X.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Liu, H.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Liu, Y.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Liu, Z. R.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Low, W.

W. Low, “Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields,” Phys. Rev. 109(2), 247–255 (1958).
[Crossref]

Masunaga, S. H.

Mei, L.

Metz, P. W.

Michler, P.

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

Mori, S.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Murakami, S.

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
[Crossref] [PubMed]

Nagaosa, N.

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
[Crossref] [PubMed]

Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288(5465), 462–468 (2000).
[Crossref] [PubMed]

Nolting, W.

W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
[Crossref] [PubMed]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Oguchi, T.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
[Crossref]

Ollakkan, M. S.

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

Pandiyarajan, T.

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

Park, N.

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

Patil, V. B.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Pawar, S. G.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
[Crossref]

Petrov, V.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Powell, R. J.

R. J. Powell and W. E. Spicer, “Optical properties of NiO and CoO,” Phys. Rev. B 2(6), 2182–2193 (1970).
[Crossref]

Qian, L.

Qin, Z.

Rossi, L. M.

Rotermund, F.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Ruan, S. P.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Sakhare, R. D.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Sang, Y.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Schwarzbäck, T.

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

Sen, S.

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

Shao, C.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Shchegoleva, N. N.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Sokolov, V. I.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Spicer, W. E.

R. J. Powell and W. E. Spicer, “Optical properties of NiO and CoO,” Phys. Rev. B 2(6), 2182–2193 (1970).
[Crossref]

Steinmeyer, G.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Südmeyer, T.

Sumikura, S.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Sun, B.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

Sun, K.

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

Sun, Z. L.

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

Suzuki, E.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Takeda, Y.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Tamaki, Y.

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Terakura, K.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

Tien, H. N.

L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
[Crossref]

Tokura, Y.

Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288(5465), 462–468 (2000).
[Crossref] [PubMed]

Tonelli, M.

Tsang, Y. H.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

Uimin, M. A.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Volkov, V. V.

V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
[Crossref]

Vykhodets, V. B.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Wang, C.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Wang, D. L.

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

Wang, H. T.

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

Wang, J.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
[Crossref] [PubMed]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, J. Y.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

Wang, K.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Wang, L. H.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Wang, S. X.

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Wang, X. W.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Wang, Y.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Wang, Y. G.

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

Wang, Z. L.

V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
[Crossref]

Wen, S.

Williams, A. R.

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

Xie, G.

Xiong, Q. H.

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Xu, H.

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Xu, Q.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Xue, H. L.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Yermakov, A. Y.

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Yim, J. H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Yu, G.

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

Yu, H.

Yu, H. H.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Yuan, P.

Zhang, H.

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

Zhang, H. J.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Zhang, L.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, M.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Zhang, R.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

Y. Zhang, H. Yu, R. Zhang, G. Zhao, H. Zhang, Y. Chen, L. Mei, M. Tonelli, and J. Wang, “Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range,” Opt. Lett. 42(3), 547–550 (2017).
[Crossref] [PubMed]

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Zhang, S.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

Zhang, S. C.

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Y. X.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

Zhang, Z.

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

Zhao, C.

Zhao, G.

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Zhou, G. W.

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

Zhou, J. R.

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

Zou, B. S.

V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, and Y. Liu, “Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity,” ACS Appl. Mater. Interfaces 2(10), 2915–2923 (2010).
[Crossref] [PubMed]

ACS Nano (2)

X. C. Dong, H. Xu, X. W. Wang, Y. X. Huang, M. B. Chan-Park, H. Zhang, L. H. Wang, W. Huang, and P. Chen, “3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection,” ACS Nano 6(4), 3206–3213 (2012).
[Crossref] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2 nanosheets,” ACS Nano 7(10), 9260–9267 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

S. X. Wang, Y. X. Zhang, R. Zhang, H. H. Yu, H. J. Zhang, and Q. H. Xiong, “High-order nonlinearity of surface plasmon resonance in Au nanoparticles: paradoxical combination of saturable and reverse-saturable absorption,” Adv. Opt. Mater. 3(10), 1342–1348 (2015).
[Crossref]

B. Sun, Y. X. Zhang, R. Zhang, H. H. Yu, G. W. Zhou, H. J. Zhang, and J. Y. Wang, “High-order nonlinear optical properties generated by different electron transition processes of NiO nanosheets and applications to ultrafast lasers,” Adv. Opt. Mater. 5(8), 1600937 (2017).
[Crossref]

Appl. Phys. Lett. (3)

H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan, and Q. Xu, “TiO2 based metal-semiconductor-metal ultraviolet photodetectors,” Appl. Phys. Lett. 90(20), 201118 (2007).
[Crossref]

R. Bek, H. Kahle, T. Schwarzbäck, M. Jetter, and P. Michler, “Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses,” Appl. Phys. Lett. 103(24), 242101 (2013).
[Crossref]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, “Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode locking near 1 μm,” Appl. Phys. Lett. 93(16), 161106 (2008).
[Crossref]

Appl. Surf. Sci. (1)

B. Sun, G. W. Zhou, T. T. Gao, H. J. Zhang, and H. H. Yu, “NiO nanosheet/TiO2 nanorod-constructed p–n heterostructures for improved photocatalytic activity,” Appl. Surf. Sci. 364, 322–331 (2016).
[Crossref]

Chem. Phys. Lett. (1)

V. V. Volkov, Z. L. Wang, and B. S. Zou, “Carrier recombination in clusters of NiO,” Chem. Phys. Lett. 337(1–3), 117–124 (2001).
[Crossref]

CrystEngComm (1)

B. Karthikeyan, T. Pandiyarajan, S. Hariharana, and M. S. Ollakkan, “Wet chemical synthesis of diameter tuned NiO microrods: microstructural, optical and optical power limiting applications,” CrystEngComm 18(4), 601–607 (2016).
[Crossref]

J. Appl. Phys. (1)

B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103(7), 073105 (2008).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

N. Park, K. Sun, Z. L. Sun, Y. Jing, and D. L. Wang, “High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(44), 7333–7338 (2013).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. A. Chougule, S. G. Pawar, P. R. Godse, R. D. Sakhare, S. Sen, and V. B. Patil, “Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties,” J. Mater. Sci. Mater. Electron. 23(3), 772–778 (2012).
[Crossref]

J. Phys. Chem. C (1)

S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki, and T. Abe, “Charge-transfer processes in dye-sensitized NiO solar cells,” J. Phys. Chem. C 112(41), 16134–16139 (2008).
[Crossref]

Nanoscale (2)

G. Chen, S. Ji, Y. Sang, S. Chang, Y. Wang, P. Hao, J. Claverie, H. Liu, and G. Yu, “Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity,” Nanoscale 7(7), 3117–3125 (2015).
[Crossref] [PubMed]

X. Zhang, S. Zhang, C. Chang, Y. Feng, Y. Li, N. Dong, K. Wang, L. Zhang, W. J. Blau, and J. Wang, “Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance,” Nanoscale 7(7), 2978–2986 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177–198 (2004).
[Crossref]

Opt. Commun. (1)

Y. G. Wang, H. R. Chen, W. F. Hsieh, and Y. H. Tsang, “Watt-level high power passively mode-locked Nd:LuVO4 laser with carbon nanotube saturable absorber at 1.34 μm,” Opt. Commun. 285(24), 5372–5374 (2012).
[Crossref]

Opt. Lett. (4)

Phys. B (1)

V. I. Sokolov, A. V. Druzhinin, G. A. Kim, N. B. Gruzdev, A. Y. Yermakov, M. A. Uimin, I. V. Byzov, N. N. Shchegoleva, V. B. Vykhodets, and T. E. Kurennykh, “Fundamental absorption edge of NiO nanocrystals,” Phys. B 430, 1–5 (2013).
[Crossref]

Phys. Rev. (1)

W. Low, “Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields,” Phys. Rev. 109(2), 247–255 (1958).
[Crossref]

Phys. Rev. B (3)

R. J. Powell and W. E. Spicer, “Optical properties of NiO and CoO,” Phys. Rev. B 2(6), 2182–2193 (1970).
[Crossref]

O. Bengone, M. Alouani, P. Blochl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,” Phys. Rev. B 62(24), 16392–16401 (2000).
[Crossref]

D. Adler and B. Feinleib, “Electrical and optical properties of narrow-band materials,” Phys. Rev. B 2(8), 3112–3134 (1970).
[Crossref]

Phys. Rev. B Condens. Matter (1)

W. Nolting, L. Haunert, and G. Borstel, “Temperature-dependent electronic structure and magnetic behavior of mott insulators,” Phys. Rev. B Condens. Matter 46(8), 4426–4445 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

K. Terakura, A. R. Williams, T. Oguchi, and J. Kiibler, “Transition-metal monoxides: band or mott insulators,” Phys. Rev. Lett. 52(20), 1830–1833 (1984).
[Crossref]

J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett. 83(9), 1834–1837 (1999).
[Crossref]

Science (2)

S. Murakami, N. Nagaosa, and S. C. Zhang, “Dissipationless quantum spin current at room temperature,” Science 301(5638), 1348–1351 (2003).
[Crossref] [PubMed]

Y. Tokura and N. Nagaosa, “Orbital physics in transition-metal oxides,” Science 288(5465), 462–468 (2000).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

L. T. Hoa, H. N. Tien, and S. H. Hur, “A highly sensitive UV sensor composed of 2D NiO nanosheets and 1D ZnO nanorods fabricated by a hydrothermal process,” Sens. Actuators A Phys. 207, 20–24 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image, (b) XRD pattern, (c) AFM image, and (d) corresponding height profile of NiO nanosheets.
Fig. 2
Fig. 2 (a) UV–vis absorption spectrum (inset: a magnified image with the spectrum range from 600 nm to 800 nm), (b) reflectivity as a function of incident pulse fluence (inset: schematic energy level diagram of Ni2+ 3d8 configurations), and (c) experimental setup for nonlinear optical response measurement.
Fig. 3
Fig. 3 Experimental configuration of the pulsed visible laser based on NiO nanosheet saturable absorber.
Fig. 4
Fig. 4 (a) Average output power versus absorbed pump power, (b) pulse train recorded in 20 ns/div (inset: 2 ms/div), (c) a single pulse trace, and (d) output spectrum (inset: an RF spectrum with a frequency of 109.8 MHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( F ) = 1 Δ R n s Δ R 1 exp ( F / F s a t ) F / F s a t

Metrics