Abstract

Asymmetric transmission (AT) holds significant applications in controlling polarization and propagation directions of electromagnetic waves. In this paper, tilted rectangular nanohole (TRNH) arrays in a square lattice are proposed to realize an AT effect. Numerical results show two AT modes in the transmission spectrum, and they are ascribed to the localized surface plasmon resonances around the two ends of TRNH and surface plasmon polaritons on the golden film. AT properties of the TRNH strongly depend on structural parameters, such as width, length, thickness, and tilted angle of TRNH. Results provide a novel mechanism for generating AT effect and offer potential plasmonic device applications, such as asymmetric wave splitters and optical isolators.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric transmission of obliquely intersecting nanoslit arrays in a gold film

Yuyan Chen, Yongkai Wang, Tiankun Wang, Yongyuan Zhang, Li Wang, and Zhongyue Zhang
Appl. Opt. 56(20) 5781-5785 (2017)

Enhanced circular dichroism of tilted zigzag-shaped nanohole arrays

Xiaoyu Feng, Yu Bai, Zhimin Jing, Yu Qu, Tiankun Wang, Hamad Ullah, and Zhongyue Zhang
Appl. Opt. 58(1) 177-181 (2019)

Splitting an asymmetric transmission peak by introducing magnetic-dipole oscillation on gold film

Yu Bai, Yuyan Chen, Tiankun Wang, Yu Qu, Yongkai Wang, Zhimin Jing, and Zhongyue Zhang
Opt. Mater. Express 8(9) 2743-2750 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
    [Crossref]
  2. E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
    [Crossref]
  3. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  4. T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
    [Crossref]
  5. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  6. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  7. R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
    [Crossref] [PubMed]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  9. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  10. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
    [Crossref]
  11. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
    [Crossref] [PubMed]
  12. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
    [Crossref]
  13. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
    [Crossref]
  14. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
    [Crossref]
  15. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
    [Crossref]
  16. M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
    [Crossref]
  17. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  18. S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
    [Crossref]
  19. D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
    [Crossref] [PubMed]
  20. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
    [Crossref]
  21. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).
  22. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
    [Crossref]
  23. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  24. L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
    [Crossref] [PubMed]
  25. Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
    [Crossref]
  26. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  27. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
    [Crossref]
  28. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
    [Crossref]
  29. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  30. Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).
  31. J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
    [Crossref]
  32. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  33. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
    [Crossref]
  34. C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
    [Crossref]
  35. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
    [Crossref]
  36. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
    [Crossref]
  37. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 613(2), 4370–4379 (1972).
    [Crossref]
  38. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  39. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]

2017 (5)

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
[Crossref] [PubMed]

Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

2016 (4)

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

2015 (2)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

2014 (3)

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

2013 (3)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

2012 (2)

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

2011 (3)

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
[Crossref]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

2010 (5)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

2009 (3)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

2008 (3)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

2007 (2)

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 613(2), 4370–4379 (1972).
[Crossref]

Alu, A.

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Azad, A. K.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Cao, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Chen, S.

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Cheng, H.

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Cheng, Y.

Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Cheville, R. A.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 613(2), 4370–4379 (1972).
[Crossref]

Cui, T. J.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dong, J. F.

Duan, J.

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Eleftherios, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Engelbrecht, S.

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

Engheta, N.

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

Fan, S.

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

Fan, Y.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Fang, S.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Fedotov, V. A.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Frölich, A.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Fu, T.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Galdi, V.

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

Galynsky, V. M.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Gastaldi, G.

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gong, R.

Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Grattan, K. T. V.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
[Crossref]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Guan, C.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Han, J.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Ji, R.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 613(2), 4370–4379 (1972).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kwon, D. H.

Latzel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Leung, D. M. H.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
[Crossref]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, F.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Li, H.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Li, J.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Li, M. H.

Li, Q.

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

Li, Y.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Liu, C.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, W.

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Liu, X.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lu, W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Lu, Z.

Luan, K.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Lv, W.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

Ma, H. F.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Moccia, M.

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

Novitsky, A. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
[Crossref]

Pan, C.

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

Pan, W. K.

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Pimenov, A.

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

Plum, E.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Qin, S.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Qu, Y.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Rahman, B. M. A.

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
[Crossref]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Ren, M.

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schnell, M.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Shi, J.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Shuvaev, A. M.

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

Shvets, G.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Singh, R.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Tang, D. F.

Thiel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Tian, J.

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Wang, C.

Wang, G.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Wang, L.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Wang, S. W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Wang, Y.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Wang, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Wegener, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Wei, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Werner, D. H.

Werner, P. L.

Wu, C.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Wu, L.

Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wunderlich, M.

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Xu, J.

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yang, Z.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Yao, Z.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Yu, X.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

Yuan, X.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhang, P.

Zhang, W.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

Zhang, Z. Y.

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Zhao, J.

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

Zhao, M.

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zheludev, N. I.

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013).
[Crossref] [PubMed]

Zhu, Z.

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

Zhukovsky, S. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
[Crossref]

ACS Photonics (2)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Eleftherios, “A three-dimensional infra-red metamaterial with asymmetric transmission,” ACS Photonics 10, 1021 (2015).

Appl. Phys. Lett. (10)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(10), 191905 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(10), 151908 (2011).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Planar metamaterial with transmission and reflection that depend on the direction of incidence,” Appl. Phys. Lett. 94(13), 131901 (2009).
[Crossref]

C. Pan, M. Ren, Q. Li, S. Fan, and J. Xu, “Broadband asymmetric transmission of optical waves from spiral plasmonic.metamaterials,” Appl. Phys. Lett. 104(13), 121112 (2014).
[Crossref]

S. Engelbrecht, M. Wunderlich, A. M. Shuvaev, and A. Pimenov, “Colossal optical activity of split-ring resonator arrays for millimeter waves,” Appl. Phys. Lett. 97(8), 081116 (2010).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett. 93(19), 191911 (2008).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(16), 223113 (2007).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(16), 101109 (2012).
[Crossref]

Carbon (1)

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transission pf planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

IEEE Photonics J. (1)

D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical Analysis of Asymmetric Silicon Nanowire Waveguide as Compact Polarization Rotator,” IEEE Photonics J. 3(16), 381–388 (2011).
[Crossref]

J. Appl. Phys. (2)

M. Moccia, G. Gastaldi, V. Galdi, A. Alu, and N. Engheta, “Optical isolation via unidirectional resonant photo tunneling,” J. Appl. Phys. 115(4), 043107 (2014).
[Crossref]

S. Fang, K. Luan, H. F. Ma, W. Lv, Y. Li, Z. Zhu, C. Guan, J. Shi, and T. J. Cui, “Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials,” J. Appl. Phys. 121(3), 033103 (2017).
[Crossref]

J. Opt. (2)

J. Zhao, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Tunable asymmetric transmission of THz wave through a grapheme planar chiral structure,” J. Opt. 18(9), 095001 (2016).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Asymmetric transmission: a generic property of two-dimensional periodic patterns,” J. Opt. 13(2), 024006 (2011).
[Crossref]

J. Phys. Chem. C (1)

T. Fu, Y. Qu, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, and Z. Y. Zhang, “Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral TemplatesThrough Oblique Angle Deposition,” J. Phys. Chem. C 121(2), 1299–1304 (2017).
[Crossref]

Nano Lett. (2)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric Transmission of Light and Enantiomerically Sensitive Plasmon Resonance in Planar Chiral Nanostructures,” Nano Lett. 7(7), 1996 (2007).
[Crossref]

Nanoscale (1)

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Z. H. LW. Liu,H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 10(13), 1364 (2016).

Phys. Rev. B (5)

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B 86(13), 075138 (2012).
[Crossref]

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).
[Crossref]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(20), 075119 (2010).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 613(2), 4370–4379 (1972).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Phys. Rev. Lett. (3)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High Performance Bianisotropic Metasurfaces: Asymmetric Transmission of Light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Plasma (1)

Y. Cheng, R. Gong, and L. Wu, “Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves,” Plasma 12(2), 1113–1120 (2017).
[Crossref]

Pure Appl. Opt. (1)

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality inmetamaterials,” Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of TRNH arrays with perforated gold film and (b) Its unit cell with the the associated geometric features.
Fig. 2
Fig. 2 Transmission (a) and AT (b) spectrum spectra of TRNH arrays under RCP and LCP light illuminations with structural parameters.
Fig. 3
Fig. 3 Charge distributions of TRNH arrays at resonant wavelength for (a) (c) RCP and (b) (d) LCP light illumination. The resonances are labeled mode I and II.
Fig. 4
Fig. 4 Transmission spectra of TRNH arrays under (a) LCP and (b) RCP light illuminations and (c) AT spectrum of with different periods.
Fig. 5
Fig. 5 AT spectra of TRNH arrays with (a) different length l, (b) different width w and (c) different thickness t.
Fig. 6
Fig. 6 AT spectra of TRNH arrays different orientation angle α with fixed length l = 520 nm, width w = 200 nm and t = 80 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

AT= T + T +
λ SPP = P i 2 + j 2 ( ε d ε m (ω) ε d + ε m (ω) )

Metrics