Abstract

A new heterodyne interferometric method for optical signal detection in photoacoustic or photothermal spectroscopy is demonstrated and characterized. It relies on using one laser beam for the photoacoustic excitation of the gas sample that creates refractive index changes along the beam path, while another laser beam is used to measure these changes. A heterodyne-based detection of path-length changes is presented that does not require the interferometer to be balanced or stabilized, which significantly simplifies the optical design. We discuss advantages of this new approach to photoacoustic signal detection and the new sensing arrangements that it enables. An open-path photoacoustic spectroscopy of carbon dioxide at 2003 nm and a novel sensing configuration that enables three-dimensional spatial gas distribution measurement are experimentally demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photothermal spectroscopy of CO2 in an intracavity mode-locked fiber laser configuration

Karol Krzempek, Grzegorz Dudzik, and Krzysztof Abramski
Opt. Express 26(22) 28861-28871 (2018)

High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator

Jari Peltola, Markku Vainio, Tuomas Hieta, Juho Uotila, Sauli Sinisalo, Markus Metsälä, Mikael Siltanen, and Lauri Halonen
Opt. Express 21(8) 10240-10250 (2013)

Trace gas detection by laser intracavity photothermal spectroscopy

K. H. Fung and H.-B. Lin
Appl. Opt. 25(5) 749-752 (1986)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Kreuzer, “Ultralow Gas Concentration Infrared Absorption Spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
    [Crossref]
  2. A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
    [Crossref]
  3. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
    [Crossref] [PubMed]
  4. B. A. Paldus, T. G. Spence, R. N. Zare, J. Oomens, F. J. M. Harren, D. H. Parker, C. Gmachl, F. Cappasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Photoacoustic spectroscopy using quantum-cascade lasers,” Opt. Lett. 24(3), 178–180 (1999).
    [Crossref] [PubMed]
  5. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  6. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
    [Crossref]
  7. M. A. Owens, C. C. Davis, and R. R. Dickerson, “A Photothermal Interferometer for Gas-Phase Ammonia Detection,” Anal. Chem. 71(7), 1391–1399 (1999).
    [Crossref] [PubMed]
  8. C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36(7), 515–518 (1980).
    [Crossref]
  9. F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
    [Crossref] [PubMed]
  10. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref] [PubMed]
  11. Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
    [Crossref] [PubMed]
  12. Y. Lin, W. Jin, F. Yang, and C. Wang, “Highly sensitive and stable all-fiber photothermal spectroscopic gas sensor,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), STu4H.3.
    [Crossref]
  13. Z. Li, Z. Wang, F. Yang, W. Jin, and W. Ren, “Mid-infrared fiber-optic photothermal interferometry,” Opt. Lett. 42(18), 3718–3721 (2017).
    [Crossref] [PubMed]
  14. S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
    [Crossref]
  15. Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
    [Crossref] [PubMed]
  16. D. C. Wolfe and R. L. Byer, “Model studies of laser absorption computed tomography for remote air pollution measurement,” Appl. Opt. 21(7), 1165–1178 (1982).
    [Crossref] [PubMed]
  17. R. L. Byer and L. A. Shepp, “Two-dimensional remote air-pollution monitoring via tomography,” Opt. Lett. 4(3), 75–77 (1979).
    [Crossref] [PubMed]
  18. Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

2014 (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (2)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

2006 (1)

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

2005 (2)

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[Crossref]

1999 (2)

1982 (1)

1980 (1)

C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36(7), 515–518 (1980).
[Crossref]

1979 (1)

1971 (1)

L. B. Kreuzer, “Ultralow Gas Concentration Infrared Absorption Spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

Baillargeon, J. N.

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[Crossref]

Barnes, J.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Bernacki, B. E.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Borri, S.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Byer, R. L.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Cappasso, F.

Cho, A. Y.

Cikach, F.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Comhair, S.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Davis, C.

C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36(7), 515–518 (1980).
[Crossref]

Davis, C. C.

M. A. Owens, C. C. Davis, and R. R. Dickerson, “A Photothermal Interferometer for Gas-Phase Ammonia Detection,” Anal. Chem. 71(7), 1391–1399 (1999).
[Crossref] [PubMed]

Dickerson, R. R.

M. A. Owens, C. C. Davis, and R. R. Dickerson, “A Photothermal Interferometer for Gas-Phase Ammonia Detection,” Anal. Chem. 71(7), 1391–1399 (1999).
[Crossref] [PubMed]

Dweik, R. A.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Gmachl, C.

Harren, F. J. M.

Ho, H. L.

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Hutchinson, A. L.

Jin, W.

Z. Li, Z. Wang, F. Yang, W. Jin, and W. Ren, “Mid-infrared fiber-optic photothermal interferometry,” Opt. Lett. 42(18), 3718–3721 (2017).
[Crossref] [PubMed]

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Kao, C.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Kosterev, A. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[Crossref]

Kreuzer, L. B.

L. B. Kreuzer, “Ultralow Gas Concentration Infrared Absorption Spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

Kriesel, J.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Lewicki, R.

Li, Y.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Li, Z.

Lin, Y.

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

Ma, J.

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

Ma, Y.

Nikodem, M.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Oomens, J.

Owens, M. A.

M. A. Owens, C. C. Davis, and R. R. Dickerson, “A Photothermal Interferometer for Gas-Phase Ammonia Detection,” Anal. Chem. 71(7), 1391–1399 (1999).
[Crossref] [PubMed]

Paldus, B. A.

Parker, D. H.

Patimisco, P.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Qi, Y.

Razeghi, M.

Ren, W.

Ren, Y.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Scamarcio, G.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Schilt, S.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

Shepp, L. A.

Sivco, D. L.

Spagnolo, V.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Spence, T. G.

Tan, Y.

Thévenaz, L.

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

Tittel, F. K.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[Crossref]

Wang, C.

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

Wang, J.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Wang, L.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Wang, X.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Wang, Z.

Wolfe, D. C.

Wysocki, G.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Xu, H.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Xue, R.

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

Yang, F.

Z. Li, Z. Wang, F. Yang, W. Jin, and W. Ren, “Mid-infrared fiber-optic photothermal interferometry,” Opt. Lett. 42(18), 3718–3721 (2017).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

F. Yang, Y. Tan, W. Jin, Y. Lin, Y. Qi, and H. L. Ho, “Hollow-core fiber Fabry-Perot photothermal gas sensor,” Opt. Lett. 41(13), 3025–3028 (2016).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Zare, R. N.

Zhang, E.

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

M. A. Owens, C. C. Davis, and R. R. Dickerson, “A Photothermal Interferometer for Gas-Phase Ammonia Detection,” Anal. Chem. 71(7), 1391–1399 (1999).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[Crossref]

Appl. Phys. Lett. (1)

C. Davis, “Trace detection in gases using phase fluctuation optical heterodyne spectroscopy,” Appl. Phys. Lett. 36(7), 515–518 (1980).
[Crossref]

Infrared Phys. Technol. (1)

S. Schilt and L. Thévenaz, “Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results,” Infrared Phys. Technol. 48(2), 154–162 (2006).
[Crossref]

J Environ Sci Health A Tox Hazard Subst Environ Eng (1)

Y. Li, H. Xu, R. Xue, X. Wang, Y. Ren, L. Wang, and J. Wang, “Path Concentration Distribution of Toluene using Remote Sensing FTIR and One-Dimensional Reconstruction Method,” J Environ Sci Health A Tox Hazard Subst Environ Eng 40(1), 183–191 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

L. B. Kreuzer, “Ultralow Gas Concentration Infrared Absorption Spectroscopy,” J. Appl. Phys. 42(7), 2934–2943 (1971).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Sci. Rep. (2)

Y. Wang, M. Nikodem, E. Zhang, F. Cikach, J. Barnes, S. Comhair, R. A. Dweik, C. Kao, and G. Wysocki, “Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Sci. Rep. 5(1), 9096 (2015).
[Crossref] [PubMed]

Y. Lin, W. Jin, F. Yang, J. Ma, C. Wang, H. L. Ho, and Y. Liu, “Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre,” Sci. Rep. 6(1), 39410 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-Enhanced Photoacoustic Spectroscopy: A Review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

Other (1)

Y. Lin, W. Jin, F. Yang, and C. Wang, “Highly sensitive and stable all-fiber photothermal spectroscopic gas sensor,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), STu4H.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of a heterodyne-based detection in PAS setup. BS – beam splitter, F – low-pass filter for the near-IR measurement beam, M – mirror.
Fig. 2
Fig. 2 Schematic diagram of potential configurations of the ‘sensing section’ in Fig. 1 that allow for (a) standoff photoacoustic detection, or with optical pathlength enhancement using (b) multi-pass cell or (c) hollow core fiber.
Fig. 3
Fig. 3 Left: schematic diagram of the experimental layout: EYDFA – erbium/ytterbium doped fiber amplifier, X0/Y0 – fiber couplers with appropriate split ratio, BPF – band pass filter for blocking pump radiation, AOM – acousto-optical modulator/frequency shifter, PD – photodiode. Mechanical chopper was used to periodically excite HCN molecules. Right: frequency of the beatnote signal indicates changes in the optical path length when pump light is tuned to the center of the HCN absorption line (black trace), while no photo-acoustic signal from HCN molecules is observed when wavelength is tuned away from the molecular transition (red trace).
Fig. 4
Fig. 4 Left: schematic diagram of the proposed heterodyne-based detection in photoacoustic spectroscopy setup with wavelength modulation. Right: 2f PAS spectrum (red) recorded for fm = 500 Hz, P = 1 W (measured at the output of the EYDFA), single data point corresponds to acquisition time of approximately 50 ms. For comparison a tunable diode laser absorption spectroscopy (TDLAS) of the same transition is also shown (gray trace).
Fig. 5
Fig. 5 Schematic diagram of PAS measurement using a 2-µm tunable fiber laser as the pump source, and a Mach-Zehnder fiber interferometer at 1.55 µm for path-length modulation signal retrieval. TDFA – thulium doped fiber amplifier, DM – dichroic mirror, AOM – acousto-optical modulator (Ω = 40 MHz), PD – photodiode.
Fig. 6
Fig. 6 (left) Six consecutive 2f WM photoacoustic spectral scans registered for 50% CO2 at atmospheric pressure within a 25-cm pathlength at different values of the pump laser WM depth (left graph, modulation frequency fm = 250 Hz, “pump” optical power 330 mW); (right) Five consecutive 2f WM photoacoustic spectra recorded for different optical powers of the pump source (fm = 250 Hz, 6 mA modulation depth). Each measurement point was averaged for 500 ms.
Fig. 7
Fig. 7 PAS configuration for spatially resolved measurement. AOM – acousto optical modulator, PD – photodiode. Gas cell filled with pure CO2 at atmospheric pressure was placed in optical path of the 1.55-µm Mach-Zehnder interferometer. Clear PA signal was registered only when the 2 µm pump beam illuminated the gas cell (right graph).
Fig. 8
Fig. 8 Allan-Werle plot showing stability of the all-optical PAS sensor.

Metrics