Abstract

A computer-automated design process for a surface-enhanced Raman scattering (SERS) substrate using a particle swarm optimization algorithm is proposed. Nanostructured Ag coated hydrogen silsesquioxane nanopillar arrays of various sizes for SERS substrate applications are fabricated by direct Ag film deposition on substrates patterned by electron beam lithography and are investigated systematically. Good agreement is demonstrated between experimental and simulation results. The absorption spectra, charge distributions, and electric field distributions are calculated using finite-difference time-domain simulations to explain the field enhancement mechanism and indicate that this enhancement originates from plasmon resonance. Our work provides a guide towards optimum SERS substrate design.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array

Shuhua Wei, Mengjie Zheng, Quan Xiang, Hailong Hu, and Huigao Duan
Opt. Express 24(18) 20613-20620 (2016)

Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array

Liangping Xia, Zheng Yang, Shaoyun Yin, Wenrui Guo, Shuhong Li, Wanyi Xie, Deping Huang, Qiling Deng, Haofei Shi, Hongliang Cui, and Chunlei Du
Opt. Express 21(9) 11349-11355 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  2. G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
    [Crossref] [PubMed]
  3. G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
    [Crossref] [PubMed]
  4. R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
    [Crossref] [PubMed]
  5. J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” Compr. Rev. Food Sci. Food Saf. 13(3), 317–328 (2014).
    [Crossref]
  6. Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
    [Crossref] [PubMed]
  7. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
    [Crossref] [PubMed]
  8. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  9. H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
    [Crossref] [PubMed]
  10. R. A. Álvarez-Puebla, “Effects of the Excitation Wavelength on the SERS Spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
    [Crossref] [PubMed]
  11. S. Wei, M. Zheng, Q. Xiang, H. Hu, and H. Duan, “Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array,” Opt. Express 24(18), 20613–20620 (2016).
    [Crossref] [PubMed]
  12. W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
    [Crossref] [PubMed]
  13. A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
    [Crossref] [PubMed]
  14. E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
    [Crossref] [PubMed]
  15. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  16. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  17. T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
    [Crossref] [PubMed]
  18. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  19. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
    [PubMed]
  20. N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
    [Crossref] [PubMed]
  21. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [Crossref] [PubMed]
  22. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref] [PubMed]
  23. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
    [Crossref] [PubMed]
  24. A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
    [Crossref]
  25. K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
    [Crossref]
  26. M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
    [Crossref] [PubMed]
  27. T. C. Le and D. A. Winkler, “Discovery and Optimization of Materials Using Evolutionary Approaches,” Chem. Rev. 116(10), 6107–6132 (2016).
    [Crossref] [PubMed]
  28. C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
    [Crossref]
  29. D. Mortazavi, A. Kouzani, and M. Kalani, “Design and fabrication of nano-sinusoid LSPR devices,” Opt. Express 22(16), 18889–18903 (2014).
    [Crossref] [PubMed]
  30. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [Crossref] [PubMed]
  31. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 2002), pp. 1942–1948.
  32. R. C. Eberhart and Y. Shi, “Particle Swarm OptimizationDevelopments, Applications and Resources,” in Proceedings of IEEE Congress on Evolutionary Computation (IEEE, 2002), pp. 81–86.
  33. C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
    [Crossref] [PubMed]
  34. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  35. Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
    [Crossref] [PubMed]
  36. S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
    [Crossref]
  37. H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
    [Crossref]
  38. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
    [Crossref]
  39. Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
    [Crossref] [PubMed]
  40. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
    [Crossref] [PubMed]

2017 (1)

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

2016 (6)

T. C. Le and D. A. Winkler, “Discovery and Optimization of Materials Using Evolutionary Approaches,” Chem. Rev. 116(10), 6107–6132 (2016).
[Crossref] [PubMed]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

S. Wei, M. Zheng, Q. Xiang, H. Hu, and H. Duan, “Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array,” Opt. Express 24(18), 20613–20620 (2016).
[Crossref] [PubMed]

2015 (1)

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

2014 (11)

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” Compr. Rev. Food Sci. Food Saf. 13(3), 317–328 (2014).
[Crossref]

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

D. Mortazavi, A. Kouzani, and M. Kalani, “Design and fabrication of nano-sinusoid LSPR devices,” Opt. Express 22(16), 18889–18903 (2014).
[Crossref] [PubMed]

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

2012 (2)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

R. A. Álvarez-Puebla, “Effects of the Excitation Wavelength on the SERS Spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

2007 (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2006 (1)

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

2005 (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

1995 (1)

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Alvarez-Puebla, R. A.

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

Álvarez-Puebla, R. A.

R. A. Álvarez-Puebla, “Effects of the Excitation Wavelength on the SERS Spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Antony, A.

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Bai, B.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Bingler, H. G.

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Bodelón, G.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Brunner, H.

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Bütün, S.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Celiksoy, S.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Chaney, S. B.

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

Chao, M.

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

Chen, C.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Chen, G.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Chen, Y.

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

Chirumamilla, M.

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Chou, S. Y.

Cinel, N. A.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Coronado, E. A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Cortie, M. B.

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

Costas, C.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Dal Negro, L.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

Das, G.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

De Angelis, F.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

De Keersmaecker, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Di Fabrizio, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

Ding, F.

Dluhy, R. A.

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

Döblinger, M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Donelli, M.

Dowd, A.

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

Duan, H.

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

S. Wei, M. Zheng, Q. Xiang, H. Hu, and H. Duan, “Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array,” Opt. Express 24(18), 20613–20620 (2016).
[Crossref] [PubMed]

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 2002), pp. 1942–1948.

Eberhart, R. C.

R. C. Eberhart and Y. Shi, “Particle Swarm OptimizationDevelopments, Applications and Resources,” in Proceedings of IEEE Congress on Evolutionary Computation (IEEE, 2002), pp. 81–86.

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Ertas, G.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, C.

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

Fan, S.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Feldmann, J.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Forestiere, C.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L. Dal Negro, “Particle-swarm optimization of broadband nanoplasmonic arrays,” Opt. Lett. 35(2), 133–135 (2010).
[Crossref] [PubMed]

Fron, E.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Fu, Z. W.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Geisler, M.

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

Geng, H. P.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Gopalakrishnan, A.

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hamon, C.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Hasna, K.

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

He, J.

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

He, L.

J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” Compr. Rev. Food Sci. Food Saf. 13(3), 317–328 (2014).
[Crossref]

He, Y.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Hill, E. H.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Hofkens, J.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Hrelescu, C.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hu, H.

Hu, J.

Hutchison, J. A.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Jäckel, F.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Jayaraj, M. K.

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Jin, C.

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Jin, G.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kalani, M.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kenens, B.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 2002), pp. 1942–1948.

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kirby, R. M.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Kouzani, A.

Krahne, R.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

Krenn, J. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Kumar, K. R.

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

La Porta, A.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Le, T. C.

T. C. Le and D. A. Winkler, “Discovery and Optimization of Materials Using Evolutionary Approaches,” Chem. Rev. 116(10), 6107–6132 (2016).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Leitner, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Leoncini, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Li, Q.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Li, W. Q.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Li, W.-D.

Liang, E.

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

Liberale, C.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Liu, J.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Liu, T.

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Liz-Marzán, L. M.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

López-Puente, V.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Lu, G.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Miano, G.

Mizuno, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Montes-García, V.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Mortazavi, D.

Oh, S. H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Ozbay, E.

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Pastoriza-Santos, I.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Perassi, E. M.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Pérez-Juste, I.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Pérez-Juste, J.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Puigdollers, J.

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

Qin, D.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

Qiu, C. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Rocha, S.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Rodal-Cedeira, S.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Rondanina, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Sanz-Ortiz, M. N.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Scarabelli, L.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scheu, C.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Shanmukh, S.

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

Shen, J. L.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Shen, Y.

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Shi, Y.

R. C. Eberhart and Y. Shi, “Particle Swarm OptimizationDevelopments, Applications and Resources,” in Proceedings of IEEE Congress on Evolutionary Computation (IEEE, 2002), pp. 81–86.

Shin, W.

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Su, L.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Tai, R. Z.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Tan, Q.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Toma, A.

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Uji-i, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Van Dorpe, P.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

Walsh, G. F.

Wang, G.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Wang, J.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Wang, L. S.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Wang, R.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wei, S.

Winkler, D. A.

T. C. Le and D. A. Winkler, “Discovery and Optimization of Materials Using Evolutionary Approaches,” Chem. Rev. 116(10), 6107–6132 (2016).
[Crossref] [PubMed]

Wisnet, A.

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

Wokaun, A.

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Wood, M. L.

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

Wu, Y. Q.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Xiang, Q.

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

S. Wei, M. Zheng, Q. Xiang, H. Hu, and H. Duan, “Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array,” Opt. Express 24(18), 20613–20620 (2016).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Xu, L. F.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Yang, J. K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

You, O.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

Zeni, E.

Zhang, H.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhang, L. J.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Zhang, M.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

Zhang, X. N.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Zhao, J.

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, Y.-P.

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

Zheng, J.

J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” Compr. Rev. Food Sci. Food Saf. 13(3), 317–328 (2014).
[Crossref]

Zheng, M.

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

S. Wei, M. Zheng, Q. Xiang, H. Hu, and H. Duan, “Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array,” Opt. Express 24(18), 20613–20620 (2016).
[Crossref] [PubMed]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Zhu, Q.

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

Zhu, S.

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

Zhu, X.

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

ACS Nano (2)

A. Gopalakrishnan, M. Chirumamilla, F. De Angelis, A. Toma, R. P. Zaccaria, and R. Krahne, “Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from few molecules,” ACS Nano 8(8), 7986–7994 (2014).
[Crossref] [PubMed]

E. M. Perassi, C. Hrelescu, A. Wisnet, M. Döblinger, C. Scheu, F. Jäckel, E. A. Coronado, and J. Feldmann, “Quantitative Understanding of the Optical Properties of a Single, Complex-Shaped Gold Nanoparticle from Experiment and Theory,” ACS Nano 8(5), 4395–4402 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse Design of Metal Nanoparticles’ Morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Adv. Mater. (2)

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. A. Hutchison, and H. Uji-i, “Live-cell SERS endoscopy using plasmonic nanowire waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

T. C. Le and D. A. Winkler, “Discovery and Optimization of Materials Using Evolutionary Approaches,” Chem. Rev. 116(10), 6107–6132 (2016).
[Crossref] [PubMed]

Compr. Rev. Food Sci. Food Saf. (1)

J. Zheng and L. He, “Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food,” Compr. Rev. Food Sci. Food Saf. 13(3), 317–328 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Zhu, C. Fan, J. Wang, J. He, E. Liang, and M. Chao, “Surface enhanced Raman scattering of 4-aminothiophenol sandwiched between Ag nanocubes and smooth Pt substrate: The effect of the thickness of Pt film,” J. Appl. Phys. 116(4), 044312 (2014).
[Crossref]

J. Phys. Chem. B (3)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, “Polarized Surface Enhanced Raman and Absorbance Spectra of Aligned Silver Nanorod Arrays,” J. Phys. Chem. B 110(7), 3153–3157 (2006).
[Crossref] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

R. A. Álvarez-Puebla, “Effects of the Excitation Wavelength on the SERS Spectrum,” J. Phys. Chem. Lett. 3(7), 857–866 (2012).
[Crossref] [PubMed]

Mol. Phys. (1)

H. G. Bingler, H. Brunner, A. Leitner, F. R. Aussenegg, and A. Wokaun, “Interference enhanced surface Raman scattering of adsorbates on a silver-spacer-islands multilayer system,” Mol. Phys. 85(3), 587–606 (1995).
[Crossref]

Nano Lett. (4)

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

T. Liu, Y. Shen, W. Shin, Q. Zhu, S. Fan, and C. Jin, “Dislocated double-layer metal gratings: an efficient unidirectional coupler,” Nano Lett. 14(7), 3848–3854 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Nano Res. (1)

K. Hasna, A. Antony, J. Puigdollers, K. R. Kumar, and M. K. Jayaraj, “Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates,” Nano Res. 9(10), 3075–3083 (2016).
[Crossref]

Nanoscale (1)

W. Q. Li, G. Wang, X. N. Zhang, H. P. Geng, J. L. Shen, L. S. Wang, J. Zhao, L. F. Xu, L. J. Zhang, Y. Q. Wu, R. Z. Tai, and G. Chen, “Geometrical and morphological optimizations of plasmonic nanoarrays for high-performance SERS detection,” Nanoscale 7(37), 15487–15494 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

M. Zheng, X. Zhu, Y. Chen, Q. Xiang, and H. Duan, “Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy,” Nanotechnology 28(4), 045303 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15(11), 1203–1211 (2016).
[Crossref] [PubMed]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65(7), 075419 (2002).
[Crossref]

Phys. Rev. Lett. (1)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

RSC Advances (1)

A. Dowd, M. Geisler, S. Zhu, M. L. Wood, and M. B. Cortie, “Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches,” RSC Advances 6(116), 115284 (2016).
[Crossref]

Small (4)

Z. Zhu, B. Bai, H. Duan, H. Zhang, M. Zhang, O. You, Q. Li, Q. Tan, J. Wang, S. Fan, and G. Jin, “M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps,” Small 10(8), 1603–1611 (2014).
[Crossref] [PubMed]

N. A. Cinel, S. Bütün, G. Ertaş, and E. Ozbay, “‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates,” Small 9(4), 531–537 (2013).
[Crossref] [PubMed]

R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small 6(5), 604–610 (2010).
[Crossref] [PubMed]

H. Ko, S. Singamaneni, and V. V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media,” Small 4(10), 1576–1599 (2008).
[Crossref] [PubMed]

Other (2)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks (IEEE, 2002), pp. 1942–1948.

R. C. Eberhart and Y. Shi, “Particle Swarm OptimizationDevelopments, Applications and Resources,” in Proceedings of IEEE Congress on Evolutionary Computation (IEEE, 2002), pp. 81–86.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the samples fabrication flow.
Fig. 2
Fig. 2 (a) and (b) The top-view SEM images of S2 before and after metal deposition. (c) and (d) The top-view images of S5 before and after metal deposition. (e) and (f) The top-view images of S3 before and after metal deposition. (g) and (h) The tilted-view (54°) images of S3 before and after metal deposition. (i) The cross-sectional image of S3 after metal deposition. The scale bars represent 200 nm. In (a)–(f), the signals were collected by detector Inlens. In (g)-(i), the signals were collected by detector SE2.
Fig. 3
Fig. 3 (a) Raman scattering spectra of samples S3 and S7. (b) SERS intensity mapping of sample S3 over a large area of 900 μm2 at the Raman signal of 1649 cm−1. The integration time of single spectra was 10 s.
Fig. 4
Fig. 4 (a) Raman scattering spectra of samples S1–S6. (b) EF comparison of experimental and simulated results at 562 nm.
Fig. 5
Fig. 5 Simulated absorption spectra of samples S1–S6.
Fig. 6
Fig. 6 Charge distributions of sample S2 under the major resonance peaks located at (a) 22 nm, (b) 28 nm, (c) 38 nm, (d) 50 nm, (e) 60nm, (f) 70nm, (g) 80nm and (h) 83nm. The maximum and minimum color bar values represent the maximum and minimum values of the extracted data, respectively.
Fig. 7
Fig. 7 (a)-(d) Charge distributions of samples S1, S2, S3 and S5, respectively, at their main resonance peaks. (e)-(h)Charge distributions of samples S2, S3 and S5 at their minor resonance peaks. For clarity, the data were magnified 10 times and a uniform color bar was used.
Fig. 8
Fig. 8 (a)–(d) Near-field distributions in the x-y plane of samples S1, S2, S3 and S5 at the wavelength of 514 nm, respectively. (e)–(h) Near-field distributions in the x-y plane of samples S1, S2, S3 and S5 at the wavelength of 562 nm, respectively. (i), (j) Near-field distributions in the x-z plane of samples S2 and S5 at the wavelength of 514 nm, respectively. (a)–(h) are all located at 83 nm along the z-axis. (i) and (j) are located at 0 nm along the y-axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS / N Surf I bulk / N bulk
I SERS I 0 = | E loc ( ω ex ) E inc ( ω ex ) | 2 | E loc ( ω s ) E inc ( ω s ) | 2
EF | E loc ( ω ex ) E inc ( ω ex ) | 2 | E loc ( ω s ) E inc ( ω s ) | 2
Merit=max ( | E loc ( ω 514 ) E inc ( ω 514 ) | 2 | E loc ( ω 562 ) E inc ( ω 562 ) | 2 dA ) i ,(i=1,2,200) .

Metrics