Abstract

The up-conversion process is extensively studied because of its wide variety of applications such as bioimaging, energy harvesting, and optical sensors. However, the optical conversion efficiency is still relatively low and needs to be improved. Therefore, this paper introduces a detailed study of improving the up-conversion emission efficiency through adding plasmonic metallic nanostructures to the up-conversion optical centers. Our idea is to couple the optical plasmonic resonance with the visible emission of the optical centers under IR excitation. The optical centers are erbium ions hosted by fluoride low-phonon environment. Our calculations consider most possible transitions that can occur between the optical centers; tri-valent erbium ions, through Judd-Ofelt analysis. In addition, the effect of changing some parametric values is discussed, such as irradiance, and multi-phonon relaxations, to show their optimum values which correspond to best quantum yield efficiency. By increasing the diameter of added gold nanoparticles (Au NPs), the probability of occupation has been increased, and consequently, both the luminescence and up-conversion efficiency have been increased.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 nanocrystals under 980 nm excitation

Lili Wang, Weiping Qin, Zhenyu Liu, Dan Zhao, Guanshi Qin, Weihua Di, and Chunfeng He
Opt. Express 20(7) 7602-7607 (2012)

Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices

Sean K. W. MacDougall, Aruna Ivaturi, Jose Marques-Hueso, Karl W. Krämer, and Bryce S. Richards
Opt. Express 20(S6) A879-A887 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
    [Crossref] [PubMed]
  2. C. F. Gainera, G.Joshuaa, and M. Romanowski,” Toward the Use of Two-Color Emission Control in Upconverting NaYF4:Er3+,Yb3+ Nanoparticles for Biomedical Imaging,” Nanoscale 8231, 82310/1–8(2012).
  3. F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
    [Crossref] [PubMed]
  4. B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
    [PubMed]
  5. J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
    [Crossref]
  6. N. Cockroft, “Application of energy upconversion spectroscopy to novel laser and phosphors design,” J. Alloys Compd. 207-208, 33–40 (1994).
    [Crossref]
  7. R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron. 20(4), 271–358 (1996).
    [Crossref]
  8. D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
    [Crossref]
  9. F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref] [PubMed]
  10. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
    [Crossref]
  11. A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
    [Crossref]
  12. S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).
  13. N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
    [Crossref] [PubMed]
  14. C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [Crossref]
  15. I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion, doctoral thesis chapter 3, pages 27- 42.
  16. N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).
  17. R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
    [Crossref] [PubMed]
  18. S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
    [Crossref] [PubMed]
  19. D. N. Patela, A. Lewis, D. M. Wright, D. Lewisa, R. Valentinea, M. Valentinea, D. Wessleya, S. Sarkisovb, andA. M. Darwishc, “Optical properties and size distribution of the nano-colloids made of rare-earth ion-doped nayf4;SPIE 9359: 93591L(1-9).
  20. Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
    [Crossref]
  21. J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
    [Crossref] [PubMed]
  22. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
    [Crossref]
  23. H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
    [Crossref]
  24. M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
    [Crossref]
  25. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16(22), 17654–17666 (2008).
    [Crossref] [PubMed]
  26. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
    [Crossref]
  27. R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
    [Crossref]
  28. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  29. X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
    [Crossref]
  30. W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
    [Crossref]
  31. X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Rep. 5(1), 152351 (2015).
    [Crossref]
  32. R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
    [Crossref]
  33. F. B. Craig, F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, Inc: John Wiley & Sons, New York, USA, 1983.
  34. F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
    [Crossref]
  35. A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
    [Crossref]
  36. J. Yang, M. Diemeer, L. T. Hilderink, R. Dekker, and A. Driessen, “Judd-Ofelt analysis of Nd (TTa) 3Phen-doped 6-FDA/Epoxy planar waveguides,” In11th Annual Symposium IEEE/LEOS Benelux 2006 Nov 30. IEEE/LEOS Benelux Chapter.
  37. E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
    [Crossref]
  38. C. Z. Hadad and S. O. Va’squez, “Energy-transfer processes induced by exchange interactions,” Phys. Rev. B 60(12), 8586–8594 (1999).
    [Crossref]
  39. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
    [Crossref] [PubMed]
  40. B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5Suppl 5), A883–A900 (2013).
    [Crossref] [PubMed]
  41. H. Guo, “Green and red upconversion luminescence in CeO2: Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
    [Crossref]
  42. A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
    [Crossref]
  43. K. Wynne and R. M. Hochstrasser, “Coherence effects in the anisotropy of optical experiments,” Chem. Phys. 171(1–2), 179–188 (1993).
    [Crossref]

2017 (1)

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

2016 (2)

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

2015 (4)

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Rep. 5(1), 152351 (2015).
[Crossref]

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

2014 (4)

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

2013 (5)

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5Suppl 5), A883–A900 (2013).
[Crossref] [PubMed]

2012 (5)

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

2010 (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

2008 (3)

G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16(22), 17654–17666 (2008).
[Crossref] [PubMed]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

2007 (4)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

H. Guo, “Green and red upconversion luminescence in CeO2: Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

2006 (2)

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

1999 (1)

C. Z. Hadad and S. O. Va’squez, “Energy-transfer processes induced by exchange interactions,” Phys. Rev. B 60(12), 8586–8594 (1999).
[Crossref]

1996 (1)

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron. 20(4), 271–358 (1996).
[Crossref]

1994 (1)

N. Cockroft, “Application of energy upconversion spectroscopy to novel laser and phosphors design,” J. Alloys Compd. 207-208, 33–40 (1994).
[Crossref]

1993 (1)

K. Wynne and R. M. Hochstrasser, “Coherence effects in the anisotropy of optical experiments,” Chem. Phys. 171(1–2), 179–188 (1993).
[Crossref]

1992 (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Aldacher, M.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Anderson, R. B.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Arkhipovb, V.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Babu, S.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Bai, X.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Bass, M.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Beaucarneb, G.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Berry, M. T.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Biner, D.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

Bläsi, B.

Bonod, N.

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

Bouhelier, A.

Capobianco, J. A.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Carminati, R.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Chen, J.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Chen, Q.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Chen, X.

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Chen, Y.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Cho, J. H.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Clavel, M.

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Cockroft, N.

N. Cockroft, “Application of energy upconversion spectroscopy to novel laser and phosphors design,” J. Alloys Compd. 207-208, 33–40 (1994).
[Crossref]

Colas des Francs, G.

Colom, R.

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

Cui, S.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

del Canizod, C.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

delaFuente, A. J.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Deng, Y.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Dereux, A.

Devilez, A.

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

Dong, C.

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Dowding, J. M.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Dujardin, E.

Eichelkraut, T.

Elhelw, S.

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Escudero, E.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Finot, E.

Fischer, S.

Fisher, S.

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

Gaballah, S.

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

Gamacheb, R. R.

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

García Solé, J.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Girard, C.

Goldmanc, A.

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

Goldschmidt, J. C.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

B. Herter, S. Wolf, S. Fischer, J. Gutmann, B. Bläsi, and J. C. Goldschmidt, “Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis,” Opt. Express 21(S5Suppl 5), A883–A900 (2013).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Greffet, J. J.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Guo, H.

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

H. Guo, “Green and red upconversion luminescence in CeO2: Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

Gutmann, J.

Hadad, C. Z.

C. Z. Hadad and S. O. Va’squez, “Energy-transfer processes induced by exchange interactions,” Phys. Rev. B 60(12), 8586–8594 (1999).
[Crossref]

Hallermann, F.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Hao, F.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

Hassounah, I.

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Henkel, C.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Hermle, M.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

Herter, B.

Hirao, K.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

Hochstrasser, R. M.

K. Wynne and R. M. Hochstrasser, “Coherence effects in the anisotropy of optical experiments,” Chem. Phys. 171(1–2), 179–188 (1993).
[Crossref]

Hou, Z.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Hu, J.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Huang, S.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Huang, X.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Hudait, M.

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Iglesias-de la Cruz, M. C.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Ivaturi, A.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Jacinto, C.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Jacquemarta, D.

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

Jain, N.

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Jaque, D.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Johnson, N. J.

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Kandas, I.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

Kim, D. H.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Kramer, K. W.

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

Krämer, K. W.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Laroche, T.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Lei, D. Y.

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Rep. 5(1), 152351 (2015).
[Crossref]

Lemaire, J.-S.

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

Li, C.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Li, Z.

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

Lin, J.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Liu, B.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Liu, X.

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Rep. 5(1), 152351 (2015).
[Crossref]

Löper, P.

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Ma, P.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

MacDougall, S. K.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

MacDougall, S. K. W.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Madi, N.

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Maestro, L. M.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Marques-Hueso, J.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Martín Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Martín-Rodríguez, R.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

May, P. S.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

McCanna, M.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Meehan, K.

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Meijerink, A.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Nordlander, P.

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

Park, W.

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

Pichaandi, J.

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Plessen, G. V.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Quintanilla, M.

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

Richards, B. S.

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, “Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices,” Opt. Express 20(S6), A879–A887 (2012).
[Crossref]

Rocha f, U.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Rodri’guez, E. M.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Rothmana, L. S.

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

Salah, M.

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

Samir, E.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

Sanz-Rodri’guez, F.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Scheps, R.

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron. 20(4), 271–358 (1996).
[Crossref]

Seal, S.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Self, W. T.

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

Shehata, N.

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Shen, J.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Shi, H.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Simeckova, M.

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

Slaouic, A.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Smith, S. J.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Soga, N.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

Sole, J. G.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

Song, H.

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Steinkemper, H.

S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles--simulation and analysis of the interactions: Errata,” Opt. Express 21(9), 10606–10611 (2013).
[Crossref] [PubMed]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

Stout, B.

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

Strumpela, C.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Summers, C. J.

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

Svrcekc, V.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Tanabe, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

Tobiasd, I.

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Va’squez, S. O.

C. Z. Hadad and S. O. Va’squez, “Energy-transfer processes induced by exchange interactions,” Phys. Rev. B 60(12), 8586–8594 (1999).
[Crossref]

van Veggel, F. C.

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

Vetrone, F.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Vigoureux, J. M.

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

von Plessen, G.

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Weeber, J. C.

Wolf, S.

Wu, S.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Wynne, K.

K. Wynne and R. M. Hochstrasser, “Coherence effects in the anisotropy of optical experiments,” Chem. Phys. 171(1–2), 179–188 (1993).
[Crossref]

Xia, A.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Xu, W.

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Yin, Z.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Yoshii, S.

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

Zamarrón, A.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Zhang, J.

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

Zhang, L.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zhang, Y.

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Zhao, J. X.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Zhou, D.

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Zorzetto, G.

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

A. Xia, Y. Deng, H. Shi, J. Hu, J. Zhang, S. Wu, Q. Chen, X. Huang, and J. Shen, “Polypeptide-Functionalized NaYF4:Yb3+,Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser,” ACS Appl. Mater. Interfaces 6(20), 18329–18336 (2014).
[Crossref] [PubMed]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Chen, W. Xu, L. Zhang, X. Bai, S. Cui, D. Zhou, Z. Yin, H. Song, and D. H. Kim, “Large Upconversion Enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ Composite Films, and Fingerprint Identification,” Adv. Funct. Mater. 25(34), 5462–5471 (2015).
[Crossref]

Appl. Phys. B (1)

A. Vial and T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93(1), 139–143 (2008).
[Crossref]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Chem. Mater. (1)

Z. Li, W. Park, G. Zorzetto, J.-S. Lemaire, and C. J. Summers, “Synthesis Protocols for δ-Doped NaYF4:Yb,Er,” Chem. Mater. 26(5), 1770–1778 (2014).
[Crossref]

Chem. Phys. (1)

K. Wynne and R. M. Hochstrasser, “Coherence effects in the anisotropy of optical experiments,” Chem. Phys. 171(1–2), 179–188 (1993).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao and P. Nordlander, “Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles,” Chem. Phys. Lett. 446(1–3), 115–118 (2007).
[Crossref]

J. Alloys Compd. (1)

N. Cockroft, “Application of energy upconversion spectroscopy to novel laser and phosphors design,” J. Alloys Compd. 207-208, 33–40 (1994).
[Crossref]

J. Appl. Phys. (3)

A. Ivaturi, S. K. W. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys. 111(1), 013109 (2012).
[Crossref]

A. Ivaturi, S. K. MacDougall, R. Martín-Rodríguez, M. Quintanilla, J. Marques-Hueso, K. W. Krämer, A. Meijerink, and B. S. Richards, “Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4: Er3+ in fluoropolymer matrix for photovoltaic devices,” J. Appl. Phys. 114(1), 013505 (2013).
[Crossref]

J. Electron. Mater. (1)

E. Samir, N. Shehata, M. Aldacher, and I. Kandas, “Parametric study of up-conversion efficiency in Er-doped lanthanide hosts under 780 nm/980 nm excitation wavelengths,” J. Electron. Mater. 45(6), 2732–2744 (2016).
[Crossref]

J. Lumin. (2)

J. H. Cho, M. Bass, S. Babu, J. M. Dowding, W. T. Self, and S. Seal, “Up-conversion luminescence of Yb3+ – Er3+ co doped CeO2 nanocrystals with imaging applications,” J. Lumin. 132(3), 743–749 (2012).
[Crossref]

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodrı’guez, J. A. Capobianco, F. Vetrone, A. J. delaFuente, F. Sanz-Rodrı’guez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha f, and J. G. Sole, “ Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. Simeckova, D. Jacquemarta, L. S. Rothmana, R. R. Gamacheb, and A. Goldmanc, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transf. 98(1), 130–155 (2006).
[Crossref]

J. Solid State Chem. (2)

H. Guo, “Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

H. Guo, “Green and red upconversion luminescence in CeO2: Er3+ powders produced by 785 nm laser,” J. Solid State Chem. 180(1), 127–131 (2007).
[Crossref]

Materials (Basel) (1)

N. Shehata, M. Clavel, K. Meehan, E. Samir, S. Gaballah, and M. Salah, “Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance,” Materials (Basel) 8(11), 7663–7672 (2015).
[Crossref] [PubMed]

Nano Today (1)

W. Xu, X. Chen, and H. Song, “Upconversion manipulation by local electromagnetic field,” Nano Today 17, 54–78 (2017).
[Crossref]

Nanoscale (2)

F. C. van Veggel, C. Dong, N. J. Johnson, and J. Pichaandi, “Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered,” Nanoscale 4(23), 7309–7321 (2012).
[Crossref] [PubMed]

B. Liu, C. Li, P. Ma, Y. Chen, Y. Zhang, Z. Hou, S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[PubMed]

Nanoscale Res Lett. (1)

N. Shehata, K. Meehan, I. Hassounah, M. Hudait, N. Jain, M. Clavel, S. Elhelw, and N. Madi,“Reduced erbium-doped ceria nanoparticles: one nano-host applicable for simultaneous optical down- and up-conversions,” Nanoscale Res Lett. 9(1), 231 (2014).

Opt. Commun. (1)

R. Carminati, J. J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Opt. Express (4)

Phys. Rev. B (2)

C. Z. Hadad and S. O. Va’squez, “Energy-transfer processes induced by exchange interactions,” Phys. Rev. B 60(12), 8586–8594 (1999).
[Crossref]

R. Colom, A. Devilez, N. Bonod, and B. Stout, “Optimal interactions of light with magnetic and electric resonant particles,” Phys. Rev. B 93(4), 045427 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (1)

S. Tanabe, S. Yoshii, K. Hirao, and N. Soga, “Upconversion properties, multiphonon relaxation, and local environment of rare-earth ions in fluorophosphate glasses,” Phys. Rev. B Condens. Matter 45(9), 4620–4625 (1992).
[Crossref] [PubMed]

Phys. Status Solidi (a) (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi (a) 205(12), 2844–2861 (2008).
[Crossref]

Prog. Quantum Electron. (1)

R. Scheps, “Upconversion laser processes,” Prog. Quantum Electron. 20(4), 271–358 (1996).
[Crossref]

Sci. Rep. (1)

X. Liu and D. Y. Lei, “Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods,” Sci. Rep. 5(1), 152351 (2015).
[Crossref]

Sensors (Basel) (1)

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors (Basel) 12(3), 2414–2435 (2012).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. Strumpela, M. McCanna, G. Beaucarneb, V. Arkhipovb, A. Slaouic, V. Svrcekc, C. del Canizod, and I. Tobiasd, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[Crossref]

Other (6)

I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion, doctoral thesis chapter 3, pages 27- 42.

D. N. Patela, A. Lewis, D. M. Wright, D. Lewisa, R. Valentinea, M. Valentinea, D. Wessleya, S. Sarkisovb, andA. M. Darwishc, “Optical properties and size distribution of the nano-colloids made of rare-earth ion-doped nayf4;SPIE 9359: 93591L(1-9).

S. Fisher, J. C. Goldschmidt, K. W. Kramer, D. Biner, and M. Hermle, andS. W.Glunz,“calibrated photoluminescence measurements of the upconverter NaYF4:20% Er3+ for silicon solar cells,” 25th European PV Solar Energy Conference and Exhibition, Valencia, Spain; 657–661(2010).

C. F. Gainera, G.Joshuaa, and M. Romanowski,” Toward the Use of Two-Color Emission Control in Upconverting NaYF4:Er3+,Yb3+ Nanoparticles for Biomedical Imaging,” Nanoscale 8231, 82310/1–8(2012).

F. B. Craig, F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles, Inc: John Wiley & Sons, New York, USA, 1983.

J. Yang, M. Diemeer, L. T. Hilderink, R. Dekker, and A. Driessen, “Judd-Ofelt analysis of Nd (TTa) 3Phen-doped 6-FDA/Epoxy planar waveguides,” In11th Annual Symposium IEEE/LEOS Benelux 2006 Nov 30. IEEE/LEOS Benelux Chapter.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Tri-valent erbium ions possible transitions under 780nm optical excitation.
Fig. 2
Fig. 2 The scattering cross sections area for Au particles with different diameters (a) D = 60nm,(b) D = 140nm, and (c) D = 200nm.
Fig. 3
Fig. 3 Field enhancement ratio for Au particle (a) D = 60nm, (b) D = 140nm, and (c) D = 200nm.
Fig. 4
Fig. 4 The occupation change of different levels in both absence and presence of Au NPs with different radii close to Er ions as a function of time (a) 4S3/2, (b) 4F9/2,and (c) 2H11/2.
Fig. 5
Fig. 5 The luminescence using different radii of Au NPs versus time of different levels (a) 4S3/2, (b) 4F9/2, and (c) 2H11/2.
Fig. 6
Fig. 6 UC efficiency verse irradiance in the absence and presence of Au NPs in proximity to Er ions for both emissions of (a) red, and (b) green.
Fig. 7
Fig. 7 The changing of green and the red efficiencies in the absence and presence of Au NPs with different radii according to the variation of (a) KMPR, and (b) WMPR.
Fig. 8
Fig. 8 The influence of changing the distance between Au NPs and Er ions dGold_Eron(a) Decay rates, and (b) Both green and red efficiencies for diameter D = 30nm and irradiance 1000 W/m2.

Tables (1)

Tables Icon

Table 1 Parameters used in this model

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

α(ω)= α o (ω) 1i( k 3 /6π) α o (ω)
α o (ω)=4π R 3 ε s (ω) ε m ε s (ω)+2 ε m
γ TOT =1+ 3 k 3 2π Im[α(ω)exp(2ikr)][ 1 (kr) 4 + 2 i (kr) 5 + 1 (kr) 6 ]
γ rad =1+ 3 k 6 4π | α(ω) | 2 [ 1 (kr) 4 + 1 (kr) 6 ]+ k 3 π Re(α(ω)) 1 (kr) 3
γ nonrad = 3 k 3 2π Im(α(ω)) k 3 6π | α(ω) | 2 [ 1 (kr) 4 + 1 (kr) 6 ]
γ TOT =1+ 3 k 3 8π Im(α(ω)exp(2ikr)[ 1 (kr) 2 + 2 i (kr) 3 + 3 (kr) 4 + 2 i (kr) 5 + 1 (kr) 6 ]
γ rad =1+ k 6 16π | α(ω) | 2 [ 1 (kr) 6 1 (kr) 4 ] k 3 π Re(α(ω)) 1 (kr) 3
γ nonrad = 3 k 3 8π [Im(α(ω)) k 3 6π | α(ω) | 2 ][ 1 (kr) 2 + 1 (kr) 4 + 1 (kr) 6 ]
γ E = | E E o | 2N
E E o =1+ l=1 g l 1 ( x r ) | b l | 2 + g l 2 ( x r ) | a l | 2
a l = m ψ j (ω) ψ j ' (υ) ψ j (υ) ψ j ' (ω) m ψ j (ω) ζ j ' (υ) ψ j (ω) ζ j (υ)
b l = ψ j (ω) ψ j ' (υ)m ψ j (υ) ψ j ' (ω) ψ j (ω) ζ j ' (υ)m ψ j (ω) ζ j (υ)
g l 1 ( x r )= 2l+1 2 | h l + ( x r ) | 2
g n 2 ( x r )= 1 2 ((l+1) | h l1 + ( x r ) | 2 +l | h l1 + ( x r ) | 2 )
ε DCP = ε ω p 2 ω 2 +iγω + P=1 P=2 A p Ω p [ e i ϕ p Ω p ωi Γ p + e i ϕ p Ω p +ω+i Γ p ]
A if = 64 π 4 e 2 3(2j+1) λ 3 n ( n 2 +2) 2 9 S
S j j ' = Ω 2 [ U (2) ] 2 + Ω 4 [ U (4) ] 2 + Ω 6 [ U (6) ] 2
n p . =[ M GSA + M ESA + M SPE + M STE + M MPR ] n p + M ET
L 1f = n p,f A f1
η UC = n oc.,i A if n oc.,i M GSA/ESA(f,i) n p,f M STE(i,f)
M GSA_ESA = n π 2 c 2 ω 12 3 . I v .[ γ 1 g 4 g 1 A 41 0 0 0 0 0 0 0 0 0 γ 2 g 7 g 2 A 72 0 0 0 0 0 0 0 0 0 γ 3 g 9 g 3 A 93 0 0 0 0 0 0 γ 1 g 4 g 1 A 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ 2 g 7 g 2 A 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ 3 g 9 g 3 A 93 0 0 0 0 0 0 ]
M STE = n π 2 c 2 ω 12 3 . I v .[ 0 0 0 γ 1 A 41 0 0 0 0 0 0 0 0 0 0 0 0 γ 2 A 72 0 0 0 0 0 0 0 0 0 0 γ 3 A 93 0 0 0 γ 1 A 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ 2 A 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 γ 3 A 93 ]
W if,plasmon GSA/ESA = γ E W GSA/ESA = 2n π 3 c 2 h ω ex 2 I v A if γ E
W if,plasmon STE = γ E W STE = 2n π 3 c 2 h ω ex 2 I v A if γ E .
W if SPE = γ if,rad A if .
W if loss = γ if,nonrad A if .

Metrics