Abstract

Composite waveplates (CWs) consisting of multiple single waveplates are basic polarization elements and widely used to manipulate the polarized light in optical systems, and their performances affect the final accuracy and precision significantly. This research proposes a method for the comprehensive characterization of an arbitrary CW based on spectroscopic Mueller matrix polarimetry. An analytical model is established to describe a general CW by extending Jones’ equivalent theorem with Mueller matrix calculus. In this model, an arbitrary CW is optically equivalent to a cascaded system consisting of a linear retarder with slight diattenuation followed by an optical rotator, and its polarization properties are completely described by four polarization parameters, including the retardance, the fast axis azimuth, the rotation angle, and the diattenuation angle. Analytical relations between the polarization properties, the structure, and the Mueller matrix of the CW are then derived from the established model. By the proposed method, the polarization parameters of an arbitrary CW can be comprehensively characterized over an ultra-wide spectral range via only one measurement. Moreover, the actual structure of the CW, including the thicknesses and fast axis azimuths of the single waveplates, as well as the axis alignment errors, can be completely reconstructed from the polarization spectra. Experiments performed with a house-developed broadband Mueller matrix polarimeter on three typical CWs including a compound zero-order waveplate, an achromatic waveplate and a specially designed biplate have demonstrated the capability of the proposed method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer

Honggang Gu, Xiuguo Chen, Hao Jiang, Chuanwei Zhang, Weiqi Li, and Shiyuan Liu
Appl. Opt. 55(15) 3935-3941 (2016)

Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry

Honggang Gu, Shiyuan Liu, Xiuguo Chen, and Chuanwei Zhang
Appl. Opt. 54(4) 684-693 (2015)

Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition

Razvigor Ossikovski
J. Opt. Soc. Am. A 25(2) 473-482 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Mu, C. Zhang, Q. Li, and R. Liang, “Achromatization of waveplate for broadband polarimetric system,” Opt. Lett. 40(11), 2485–2488 (2015).
    [Crossref] [PubMed]
  2. H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
    [Crossref]
  3. L. Liu, A. Zeng, L. Zhu, and H. Huang, “Lateral shearing interferometer with variable shearing for measurement of a small beam,” Opt. Lett. 39(7), 1992–1995 (2014).
    [Crossref] [PubMed]
  4. S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
    [Crossref]
  5. Y. Qu, L. Li, Y. Shen, X. Wei, T. T. W. Wong, P. Hu, J. Yao, K. Maslov, and L. V. Wang, “Dichroism-sensitive photoacoustic computed tomography,” Optica 5(4), 495–500 (2018).
    [Crossref]
  6. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
    [Crossref] [PubMed]
  7. J. Li, Y. Tan, and S. Zhang, “Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity,” Opt. Lett. 40(15), 3615–3618 (2015).
    [Crossref] [PubMed]
  8. J. L. Vilas and A. Lazarova-Lazarova, “A simple analytical method to obtain achromatic waveplate retarders,” J. Opt. 19(4), 045701 (2017).
    [Crossref]
  9. A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
    [Crossref]
  10. X. Tu, L. Jiang, M. Ibn-Elhaj, and S. Pau, “Design, fabrication and testing of achromatic elliptical polarizer,” Opt. Express 25(9), 10355–10367 (2017).
    [Crossref] [PubMed]
  11. H. Hurwitz and R. C. Jones, “A new calculus for the treatment of optical systems. Part II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31(7), 493–499 (1941).
    [Crossref]
  12. D. B. Chenault and R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32(19), 3513–3519 (1993).
    [Crossref] [PubMed]
  13. L. Broch, A. En Naciri, and L. Johann, “Systematic errors for a Mueller matrix dual rotating compensator ellipsometer,” Opt. Express 16(12), 8814–8824 (2008).
    [Crossref] [PubMed]
  14. E. A. West and M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34(6), 1574–1580 (1995).
    [Crossref]
  15. B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, “Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range,” Opt. Express 9(5), 225–235 (2001).
    [Crossref] [PubMed]
  16. H. Dong, M. Tang, and Y. Gong, “Measurement errors induced by deformation of optical axes of achromatic waveplate retarders in RRFP Stokes polarimeters,” Opt. Express 20(24), 26649–26666 (2012).
    [Crossref] [PubMed]
  17. P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
    [Crossref]
  18. L. Yao, Z. Zhiyao, and W. Runwen, “Optical heterodyne measurement of the phase retardation of a quarter-wave plate,” Opt. Lett. 13(7), 553–555 (1988).
    [Crossref] [PubMed]
  19. C. Chou, Y. C. Huang, and M. Chang, “Effect of elliptical birefringence on the measurement of the phase retardation of a quartz wave plate by an optical heterodyne polarimeter,” J. Opt. Soc. Am. A 14(6), 1367–1372 (1997).
    [Crossref]
  20. C. J. Yu, C. E. Lin, Y. C. Li, L. D. Chou, J. S. Wu, C. C. Lee, and C. Chou, “Dual-frequency heterodyne ellipsometer for characterizing generalized elliptically birefringent media,” Opt. Express 17(21), 19213–19224 (2009).
    [Crossref] [PubMed]
  21. Y. L. Lo, C. H. Lai, J. F. Lin, and P. F. Hsu, “Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer,” Appl. Opt. 43(10), 2013–2022 (2004).
    [Crossref] [PubMed]
  22. Y. T. Jeng and Y. L. Lo, “Heterodyne polariscope for sequential measurements of the complete optical parameters of a multiple-order wave plate,” Appl. Opt. 45(6), 1134–1141 (2006).
    [Crossref] [PubMed]
  23. C. C. Chou, S. Y. Lu, T. Lin, S. H. Lu, and R. J. Jeng, “Environment-noise-free optical heterodyne retardation measurement using a double-pass acousto-optic frequency shifter,” Opt. Lett. 41(22), 5138–5141 (2016).
    [Crossref] [PubMed]
  24. W. Liu, M. Liu, and S. Zhang, “Method for the measurement of phase retardation of any wave plate with high precision,” Appl. Opt. 47(30), 5562–5569 (2008).
    [Crossref] [PubMed]
  25. W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
    [Crossref] [PubMed]
  26. W. Chen, S. Zhang, and X. Long, “Optic axis determination based on polarization flipping effect induced by optical feedback,” Opt. Lett. 38(7), 1080–1082 (2013).
    [Crossref] [PubMed]
  27. P. A. Williams, A. H. Rose, and C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36(25), 6466–6472 (1997).
    [Crossref] [PubMed]
  28. P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, and T. T. Yang, “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Express 17(18), 15860–15884 (2009).
    [Crossref] [PubMed]
  29. J. F. Lin and Y. L. Lo, “Measurement of optical rotation and phase retardance of optical samples with depolarization effects using linearly and circularly polarized probe lights,” Opt. Lasers Eng. 47(9), 948–955 (2009).
    [Crossref]
  30. C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
    [Crossref] [PubMed]
  31. J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
    [Crossref] [PubMed]
  32. X. Chen, L. Yan, and X. S. Yao, “Waveplate analyzer using binary magneto-optic rotators,” Opt. Express 15(20), 12989–12994 (2007).
    [Crossref] [PubMed]
  33. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]
  34. J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express 19(9), 8557–8564 (2011).
    [Crossref] [PubMed]
  35. J. M. Herrera-Fernandez, J. L. Vilas, L. M. Sanchez-Brea, and E. Bernabeu, “Design of superachromatic quarter-wave retarders in a broad spectral range,” Appl. Opt. 54(33), 9758–9762 (2015).
    [Crossref] [PubMed]
  36. S. Liu, X. Chen, and C. Zhang, “Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology,” Thin Solid Films 584, 176–185 (2015).
    [Crossref]
  37. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  38. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011).
    [Crossref] [PubMed]
  39. J. Humlicek, “Polarized light and ellipsometry,” in Handbook of ellipsometry, H. G. Tompkins, and E. A. Irene, eds. (William Andrew, 2005), Chap. 1, pp. 59–66.
  40. D. Clarke, “Interference effects in compound and achromatic wave plates,” J. Opt. A, Pure Appl. Opt. 6(11), 1041–1046 (2004).
    [Crossref]
  41. J. Lee, P. I. Rovira, I. An, and R. W. Collins, “Alignment and calibration of the MgF2 biplate compensator for applications in rotating-compensator multichannel ellipsometry,” J. Opt. Soc. Am. A 18(8), 1980–1985 (2001).
    [Crossref] [PubMed]
  42. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10(4), 973–975 (1971).
    [Crossref] [PubMed]
  43. X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
    [Crossref]
  44. H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
    [Crossref] [PubMed]
  45. H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
    [Crossref] [PubMed]
  46. Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
    [Crossref]
  47. Z. Han and Q. Zheng, “Self-spectral calibration of a compound zero-order waveplate at blind rotation angles,” Opt. Lasers Eng. 91, 257–260 (2017).
    [Crossref]
  48. D. K. Aitken and J. H. Hough, “Spectral modulation, or ripple, in retardation plates for linear and circular polarization,” Publ. Astron. Soc. Pac. 113(788), 1300–1305 (2001).
    [Crossref]
  49. X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
    [Crossref]
  50. S. Chandrasekhar, “The dispersion and thermo-optic behaviour of vitreous silica,” Proc. Indian Acad. Sci. A 34, 275–282 (1951).
  51. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [Crossref] [PubMed]

2018 (3)

2017 (3)

X. Tu, L. Jiang, M. Ibn-Elhaj, and S. Pau, “Design, fabrication and testing of achromatic elliptical polarizer,” Opt. Express 25(9), 10355–10367 (2017).
[Crossref] [PubMed]

J. L. Vilas and A. Lazarova-Lazarova, “A simple analytical method to obtain achromatic waveplate retarders,” J. Opt. 19(4), 045701 (2017).
[Crossref]

Z. Han and Q. Zheng, “Self-spectral calibration of a compound zero-order waveplate at blind rotation angles,” Opt. Lasers Eng. 91, 257–260 (2017).
[Crossref]

2016 (4)

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
[Crossref]

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

C. C. Chou, S. Y. Lu, T. Lin, S. H. Lu, and R. J. Jeng, “Environment-noise-free optical heterodyne retardation measurement using a double-pass acousto-optic frequency shifter,” Opt. Lett. 41(22), 5138–5141 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (2)

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

L. Liu, A. Zeng, L. Zhu, and H. Huang, “Lateral shearing interferometer with variable shearing for measurement of a small beam,” Opt. Lett. 39(7), 1992–1995 (2014).
[Crossref] [PubMed]

2013 (4)

W. Chen, S. Zhang, and X. Long, “Optic axis determination based on polarization flipping effect induced by optical feedback,” Opt. Lett. 38(7), 1080–1082 (2013).
[Crossref] [PubMed]

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
[Crossref]

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

2012 (2)

W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
[Crossref] [PubMed]

H. Dong, M. Tang, and Y. Gong, “Measurement errors induced by deformation of optical axes of achromatic waveplate retarders in RRFP Stokes polarimeters,” Opt. Express 20(24), 26649–26666 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (3)

2008 (2)

2007 (1)

2006 (2)

2004 (2)

2001 (3)

2000 (1)

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

1997 (2)

1996 (1)

1995 (1)

E. A. West and M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34(6), 1574–1580 (1995).
[Crossref]

1993 (1)

1988 (1)

1984 (1)

1971 (1)

1951 (1)

S. Chandrasekhar, “The dispersion and thermo-optic behaviour of vitreous silica,” Proc. Indian Acad. Sci. A 34, 275–282 (1951).

1941 (1)

Aitken, D. K.

D. K. Aitken and J. H. Hough, “Spectral modulation, or ripple, in retardation plates for linear and circular polarization,” Publ. Astron. Soc. Pac. 113(788), 1300–1305 (2001).
[Crossref]

An, I.

Beckers, J. M.

Berglund, A. J.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Bernabeu, E.

Booth, M. J.

Boulbry, B.

Bousquet, B.

Broch, L.

Cai, Y.

Chandrasekhar, S.

S. Chandrasekhar, “The dispersion and thermo-optic behaviour of vitreous silica,” Proc. Indian Acad. Sci. A 34, 275–282 (1951).

Chang, M.

Chen, H.

Chen, L.

Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
[Crossref]

Chen, P. C.

Chen, W.

W. Chen, S. Zhang, and X. Long, “Optic axis determination based on polarization flipping effect induced by optical feedback,” Opt. Lett. 38(7), 1080–1082 (2013).
[Crossref] [PubMed]

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
[Crossref] [PubMed]

Chen, X.

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
[Crossref] [PubMed]

S. Liu, X. Chen, and C. Zhang, “Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology,” Thin Solid Films 584, 176–185 (2015).
[Crossref]

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
[Crossref]

X. Chen, L. Yan, and X. S. Yao, “Waveplate analyzer using binary magneto-optic rotators,” Opt. Express 15(20), 12989–12994 (2007).
[Crossref] [PubMed]

Chenault, D. B.

Chipman, R. A.

Chou, C.

Chou, C. C.

Chou, L. D.

Clarke, D.

D. Clarke, “Interference effects in compound and achromatic wave plates,” J. Opt. A, Pure Appl. Opt. 6(11), 1041–1046 (2004).
[Crossref]

Collins, R. W.

Danilishin, S. L.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Dodge, M. J.

Dong, H.

Elston, S. J.

En Naciri, A.

Fells, J. A. J.

Gallot, G.

Gong, Y.

Graf, C.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Gu, H.

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
[Crossref] [PubMed]

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

Guern, Y.

Han, Z.

Z. Han and Q. Zheng, “Self-spectral calibration of a compound zero-order waveplate at blind rotation angles,” Opt. Lasers Eng. 91, 257–260 (2017).
[Crossref]

Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
[Crossref]

Hennig, J. S.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Herrera-Fernandez, J. M.

Hild, S.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Hough, J. H.

D. K. Aitken and J. H. Hough, “Spectral modulation, or ripple, in retardation plates for linear and circular polarization,” Publ. Astron. Soc. Pac. 113(788), 1300–1305 (2001).
[Crossref]

Hsu, P. F.

Hu, P.

Huang, H.

Huang, Y. C.

Hurwitz, H.

Ibn-Elhaj, M.

Jeng, R. J.

Jeng, Y. T.

Jiang, H.

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

Jiang, L.

Johann, L.

Jones, R. C.

Khalili, F. Y.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Knyazev, E.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Kwiat, P. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Kyoseva, E.

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

Lai, C. H.

Lazarova-Lazarova, A.

J. L. Vilas and A. Lazarova-Lazarova, “A simple analytical method to obtain achromatic waveplate retarders,” J. Opt. 19(4), 045701 (2017).
[Crossref]

Le Jeune, B.

Lee, C. C.

Lee, J.

Li, H.

W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
[Crossref] [PubMed]

Li, J.

Li, L.

Li, Q.

Li, W.

Li, Y. C.

Liang, R.

Liao, C. C.

Lin, C. E.

Lin, J. F.

Lin, T.

Liu, J.

Liu, L.

Liu, M.

Liu, S.

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

S. Liu, X. Chen, and C. Zhang, “Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology,” Thin Solid Films 584, 176–185 (2015).
[Crossref]

H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
[Crossref] [PubMed]

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
[Crossref]

Liu, W.

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

W. Liu, M. Liu, and S. Zhang, “Method for the measurement of phase retardation of any wave plate with high precision,” Appl. Opt. 47(30), 5562–5569 (2008).
[Crossref] [PubMed]

Lo, Y. L.

Long, X.

W. Chen, S. Zhang, and X. Long, “Optic axis determination based on polarization flipping effect induced by optical feedback,” Opt. Lett. 38(7), 1080–1082 (2013).
[Crossref] [PubMed]

W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
[Crossref] [PubMed]

Lotrian, J.

Lu, S. H.

Lu, S. Y.

Maslov, K.

Masson, J. B.

Morris, S. M.

Mu, T.

Naik, D. S.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Ossikovski, R.

Pau, S.

Peterson, C. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Qu, Y.

Rangelov, A. A.

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

Rose, A. H.

Rovira, P. I.

Runwen, W.

Sanchez-Brea, L. M.

Shen, Y.

Smith, M. H.

E. A. West and M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34(6), 1574–1580 (1995).
[Crossref]

Steinlechner, S.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Tan, Y.

J. Li, Y. Tan, and S. Zhang, “Generation of phase difference between self-mixing signals in a-cut Nd:YVO4 laser with a waveplate in the external cavity,” Opt. Lett. 40(15), 3615–3618 (2015).
[Crossref] [PubMed]

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

Tang, M.

Tu, X.

Vilas, J. L.

Voronchev, N. V.

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Wang, C. M.

Wang, L. V.

Wei, X.

West, E. A.

E. A. West and M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34(6), 1574–1580 (1995).
[Crossref]

White, A. G.

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Williams, P. A.

Wong, T. T. W.

Wu, J. S.

Xu, S.

Yan, L.

Yang, T. T.

Yao, J.

Yao, L.

Yao, X. S.

Yu, C. J.

Yu, T. C.

Zeng, A.

Zeng, X.

Zhang, C.

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

S. Liu, X. Chen, and C. Zhang, “Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology,” Thin Solid Films 584, 176–185 (2015).
[Crossref]

T. Mu, C. Zhang, Q. Li, and R. Liang, “Achromatization of waveplate for broadband polarimetric system,” Opt. Lett. 40(11), 2485–2488 (2015).
[Crossref] [PubMed]

H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
[Crossref] [PubMed]

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
[Crossref]

Zhang, P.

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

Zhang, S.

Zheng, Q.

Z. Han and Q. Zheng, “Self-spectral calibration of a compound zero-order waveplate at blind rotation angles,” Opt. Lasers Eng. 91, 257–260 (2017).
[Crossref]

Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
[Crossref]

Zhiyao, Z.

Zhu, L.

Zou, D.

Appl. Opt. (10)

D. B. Chenault and R. A. Chipman, “Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter,” Appl. Opt. 32(19), 3513–3519 (1993).
[Crossref] [PubMed]

Y. L. Lo, C. H. Lai, J. F. Lin, and P. F. Hsu, “Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer,” Appl. Opt. 43(10), 2013–2022 (2004).
[Crossref] [PubMed]

Y. T. Jeng and Y. L. Lo, “Heterodyne polariscope for sequential measurements of the complete optical parameters of a multiple-order wave plate,” Appl. Opt. 45(6), 1134–1141 (2006).
[Crossref] [PubMed]

W. Liu, M. Liu, and S. Zhang, “Method for the measurement of phase retardation of any wave plate with high precision,” Appl. Opt. 47(30), 5562–5569 (2008).
[Crossref] [PubMed]

P. A. Williams, A. H. Rose, and C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36(25), 6466–6472 (1997).
[Crossref] [PubMed]

J. M. Herrera-Fernandez, J. L. Vilas, L. M. Sanchez-Brea, and E. Bernabeu, “Design of superachromatic quarter-wave retarders in a broad spectral range,” Appl. Opt. 54(33), 9758–9762 (2015).
[Crossref] [PubMed]

H. Gu, S. Liu, X. Chen, and C. Zhang, “Calibration of misalignment errors in composite waveplates using Mueller matrix ellipsometry,” Appl. Opt. 54(4), 684–693 (2015).
[Crossref] [PubMed]

H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, and S. Liu, “Accurate alignment of optical axes of a biplate using a spectroscopic Mueller matrix ellipsometer,” Appl. Opt. 55(15), 3935–3941 (2016).
[Crossref] [PubMed]

J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10(4), 973–975 (1971).
[Crossref] [PubMed]

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating structures as measured by Mueller matrix polarimetry,” Appl. Phys. Lett. 103(15), 151605 (2013).
[Crossref]

J. Opt. (2)

H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, “Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes,” J. Opt. 18(2), 025702 (2016).
[Crossref]

J. L. Vilas and A. Lazarova-Lazarova, “A simple analytical method to obtain achromatic waveplate retarders,” J. Opt. 19(4), 045701 (2017).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

D. Clarke, “Interference effects in compound and achromatic wave plates,” J. Opt. A, Pure Appl. Opt. 6(11), 1041–1046 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Light Sci. Appl. (1)

S. L. Danilishin, E. Knyazev, N. V. Voronchev, F. Y. Khalili, C. Graf, S. Steinlechner, J. S. Hennig, and S. Hild, “A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes,” Light Sci. Appl. 7(1), 11 (2018).
[Crossref]

Opt. Commun. (2)

A. A. Rangelov and E. Kyoseva, “Broadband composite polarization rotator,” Opt. Commun. 338, 574–577 (2015).
[Crossref]

Q. Zheng, Z. Han, and L. Chen, “Determination of the misalignment error of a compound zero-order waveplate using the spectroscopic phase shifting method,” Opt. Commun. 374, 18–23 (2016).
[Crossref]

Opt. Eng. (1)

E. A. West and M. H. Smith, “Polarization errors associated with birefringent waveplates,” Opt. Eng. 34(6), 1574–1580 (1995).
[Crossref]

Opt. Express (10)

B. Boulbry, B. Bousquet, B. Le Jeune, Y. Guern, and J. Lotrian, “Polarization errors associated with zero-order achromatic quarter-wave plates in the whole visible spectral range,” Opt. Express 9(5), 225–235 (2001).
[Crossref] [PubMed]

H. Dong, M. Tang, and Y. Gong, “Measurement errors induced by deformation of optical axes of achromatic waveplate retarders in RRFP Stokes polarimeters,” Opt. Express 20(24), 26649–26666 (2012).
[Crossref] [PubMed]

L. Broch, A. En Naciri, and L. Johann, “Systematic errors for a Mueller matrix dual rotating compensator ellipsometer,” Opt. Express 16(12), 8814–8824 (2008).
[Crossref] [PubMed]

X. Tu, L. Jiang, M. Ibn-Elhaj, and S. Pau, “Design, fabrication and testing of achromatic elliptical polarizer,” Opt. Express 25(9), 10355–10367 (2017).
[Crossref] [PubMed]

C. J. Yu, C. E. Lin, Y. C. Li, L. D. Chou, J. S. Wu, C. C. Lee, and C. Chou, “Dual-frequency heterodyne ellipsometer for characterizing generalized elliptically birefringent media,” Opt. Express 17(21), 19213–19224 (2009).
[Crossref] [PubMed]

P. C. Chen, Y. L. Lo, T. C. Yu, J. F. Lin, and T. T. Yang, “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Express 17(18), 15860–15884 (2009).
[Crossref] [PubMed]

J. Liu, Y. Cai, H. Chen, X. Zeng, D. Zou, and S. Xu, “Design for the optical retardation in broadband zero-order half-wave plates,” Opt. Express 19(9), 8557–8564 (2011).
[Crossref] [PubMed]

C. C. Liao and Y. L. Lo, “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices,” Opt. Express 21(14), 16831–16853 (2013).
[Crossref] [PubMed]

J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
[Crossref] [PubMed]

X. Chen, L. Yan, and X. S. Yao, “Waveplate analyzer using binary magneto-optic rotators,” Opt. Express 15(20), 12989–12994 (2007).
[Crossref] [PubMed]

Opt. Lasers Eng. (2)

J. F. Lin and Y. L. Lo, “Measurement of optical rotation and phase retardance of optical samples with depolarization effects using linearly and circularly polarized probe lights,” Opt. Lasers Eng. 47(9), 948–955 (2009).
[Crossref]

Z. Han and Q. Zheng, “Self-spectral calibration of a compound zero-order waveplate at blind rotation angles,” Opt. Lasers Eng. 91, 257–260 (2017).
[Crossref]

Opt. Lett. (8)

Optica (1)

Phys. Rev. Lett. (1)

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum cryptography: eavesdropping on the ekert protocol,” Phys. Rev. Lett. 84(20), 4733–4736 (2000).
[Crossref] [PubMed]

Proc. Indian Acad. Sci. A (1)

S. Chandrasekhar, “The dispersion and thermo-optic behaviour of vitreous silica,” Proc. Indian Acad. Sci. A 34, 275–282 (1951).

Publ. Astron. Soc. Pac. (1)

D. K. Aitken and J. H. Hough, “Spectral modulation, or ripple, in retardation plates for linear and circular polarization,” Publ. Astron. Soc. Pac. 113(788), 1300–1305 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

W. Chen, H. Li, S. Zhang, and X. Long, “Measurement of phase retardation of waveplate online based on laser feedback,” Rev. Sci. Instrum. 83(1), 013101 (2012).
[Crossref] [PubMed]

Sci. China Technol. Sci. (1)

P. Zhang, Y. Tan, W. Liu, and W. Chen, “Methods for optical phase retardation measurement: A review,” Sci. China Technol. Sci. 56(5), 1155–1163 (2013).
[Crossref]

Thin Solid Films (2)

S. Liu, X. Chen, and C. Zhang, “Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology,” Thin Solid Films 584, 176–185 (2015).
[Crossref]

X. Chen, S. Liu, H. Gu, and C. Zhang, “Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter,” Thin Solid Films 571, 653–659 (2014).
[Crossref]

Other (1)

J. Humlicek, “Polarized light and ellipsometry,” in Handbook of ellipsometry, H. G. Tompkins, and E. A. Irene, eds. (William Andrew, 2005), Chap. 1, pp. 59–66.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the structure of a general CW. Fn and θn (n = 1, 2, …, N) refer to the fast axis of the n-th single-waveplate and its azimuth angle with respect to the x-axis, respectively.
Fig. 2
Fig. 2 (a) Schematic of the MMP-based experimental set-up for the characterization of a CW; (b) Prototype of the experimental set-up based on a house-developed broadband MMP.
Fig. 3
Fig. 3 Mueller matrix spectra: (a) the quartz compound zero-order waveplate; (b) the MgF2-MgF2-quartz achromatic waveplate; (c) the MgF2 biplate.
Fig. 4
Fig. 4 Spectra for the equivalent polarization parameters over concerned wavelength ranges and their corresponding standard deviations (STD) for 30 repeated measurements: (a) the quartz compound zero-order waveplate; (b) the MgF2-MgF2-quartz achromatic waveplate; (c) the MgF2 biplate.
Fig. 5
Fig. 5 Elliptical retardances and ellipticities of the tested CWs.
Fig. 6
Fig. 6 Designed and measured retardance spectra for the tested CWs.

Tables (1)

Tables Icon

Table 1 Structure parameters of the CWs tested in this paper.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

M( δ,θ )=R( θ )M( δ )R( θ ).
M( δ )=[ 1 0 0 0 0 1 0 0 0 0 cosδ sinδ 0 0 sinδ cosδ ],
R( θ )=[ 1 0 0 0 0 cos(2θ) sin(2θ) 0 0 sin(2θ) cos(2θ) 0 0 0 0 1 ],
δ= 2π λ dΔn,
tanψ= t f t s ,
M( δ,ψ )=[ 1 cos(2ψ) 0 0 cos(2ψ) 1 0 0 0 0 sin(2ψ)cosδ sin(2ψ)sinδ 0 0 sin(2ψ)sinδ sin(2ψ)cosδ ].
M= n=1 N M( δ n , θ n ) R( ρ e )R( θ e )M( δ e , ψ e )R( θ e )=[ 1 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ],
m 12 = C θ e C ψ e ,
m 13 = S θ e C ψ e ,
m 14 = m 41 =0,
m 21 =( C θ e C ρ e + S θ e S ρ e ) C ψ e ,
m 22 =( C θ e 2 + S θ e 2 S ψ e cos δ e ) C ρ e + S θ e C θ e ( 1 S ψ e cos δ e ) S ρ e ,
m 23 = S θ e C θ e ( 1 S ψ e cos δ e ) C ρ e +( S θ e 2 + C θ e 2 S ψ e cos δ e ) S ρ e ,
m 24 =( C θ e S ρ e S θ e C ρ e ) S ψ e sin δ e ,
m 31 =( C θ e S ρ e S θ e C ρ e ) C ψ e ,
m 32 = S θ e C θ e ( 1 S ψ e cos δ e ) C ρ e ( C θ e 2 + S θ e 2 S ψ e cos δ e ) S ρ e ,
m 33 =( S θ e 2 + C θ e 2 S ψ e cos δ e ) C ρ e S θ e C θ e ( 1 S ψ e cos δ e ) S ρ e ,
m 34 =( S θ e S ρ e + C θ e C ρ e ) S ψ e sin δ e ,
m 42 = S θ e S ψ e sin δ e ,
m 43 = C θ e S ψ e sin δ e ,
m 44 = S ψ e cos δ e ,
S κ =sin( 2κ ), C κ =cos( 2κ ),( κ= θ e , ψ e , ρ e ).
δ e = tan 1 m 42 2 + m 43 2 m 44 2 ,
θ e = 1 2 tan 1 ( m 42 m 43 ),
ρ e = 1 2 tan 1 ( m 23 m 32 m 22 + m 33 ),
ψ e = 1 2 cos 1 m 12 2 + m 13 2 = 1 2 cos 1 m 21 2 + m 31 2 ,
γ=2 cos 1 ( cos δ e 2 cos ρ e ),
ε= 1 2 tan 1 ( cot δ e 2 sin ρ e ).
x ^ =arg min xΩ k [ y k c y k m σ( y k ) ] 2 ,

Metrics