Abstract

A distributed optical fiber dynamic strain sensor also known as a distributed acoustic sensor (DAS) based on two-mode fiber is demonstrated. By using φ-OTDR interrogation technique, the backscattered light from higher order modes can be used to fully quantify vibrations along the sensing fiber. In addition, by combining the results obtained from different modes, 2.52dB improvement in noise floor is achieved. These results confirm that few-mode fibers can be used for DAS applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR

Mengmeng Chen, Ali Masoudi, and Gilberto Brambilla
Opt. Express 27(7) 9684-9695 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Singh, “Distributed Temperature Sensing (DTS) Market - Global Forecast to 2022,” Markets and Markets, 328799 (2016).
  2. M. A. Bisyarin, O. I. Kotov, A. H. Hartog, L. B. Liokumovich, and N. A. Ushakov, “Rayleigh backscattering from the fundamental mode in step-index multimode optical fibers,” Appl. Opt. 56(2), 354–364 (2017).
    [Crossref] [PubMed]
  3. J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
    [Crossref]
  4. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  5. Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
    [Crossref]
  6. A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40(7), 1488–1491 (2015).
    [Crossref] [PubMed]
  7. A. Kumar, N. Goel, and R. Varshney, “Studies on a Few-Mode Fiber-Optic Strain Sensor Based on LP01-LP02 Mode Interference,” J. Lightwave Technol. 19(3), 358–362 (2001).
    [Crossref]
  8. A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
    [Crossref] [PubMed]
  9. A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
    [Crossref] [PubMed]
  10. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref] [PubMed]
  11. Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
    [Crossref] [PubMed]
  12. H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
    [Crossref] [PubMed]
  13. H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
    [Crossref] [PubMed]
  14. M. A. Bisyarin, O. I. Kotov, A. H. Hartog, L. B. Liokumovich, and N. A. Ushakov, “Rayleigh backscattering from the fundamental mode in multimode optical fibers,” Appl. Opt. 55(19), 5041–5051 (2016).
    [Crossref] [PubMed]
  15. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984).
    [Crossref]
  16. Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
    [Crossref] [PubMed]
  17. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  18. A. Masoudi and T. P. Newson, “Analysis of distributed optical fibre acoustic sensors through numerical modelling,” Opt. Express 25(25), 32021–32040 (2017).
    [Crossref] [PubMed]
  19. A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
    [Crossref] [PubMed]
  20. S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
    [Crossref] [PubMed]
  21. Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
    [Crossref] [PubMed]
  22. A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
    [Crossref] [PubMed]
  23. Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 3897873 (2018).
    [Crossref]
  24. D. Davies, A. H. Hartog, and K. Kader, “Distributed vibration sensing system using multimode fiber,” U.S. Patent No. 7 668 411 B2, 23 Feb. (2010).
  25. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
    [Crossref]
  26. X. He, S. Xie, F. Liu, S. Cao, L. Gu, X. Zheng, and M. Zhang, “Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR,” Opt. Lett. 42(3), 442–445 (2017).
    [Crossref] [PubMed]

2018 (2)

2017 (6)

2016 (5)

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

M. A. Bisyarin, O. I. Kotov, A. H. Hartog, L. B. Liokumovich, and N. A. Ushakov, “Rayleigh backscattering from the fundamental mode in multimode optical fibers,” Appl. Opt. 55(19), 5041–5051 (2016).
[Crossref] [PubMed]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41(7), 1514–1517 (2016).
[Crossref] [PubMed]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
[Crossref] [PubMed]

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

2013 (2)

A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2005 (1)

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

2001 (1)

1984 (1)

H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984).
[Crossref]

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Bisyarin, M. A.

Cao, S.

Che, D.

Chen, D.

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Chen, J.

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Chen, X.

Di Pasquale, F.

Fang, J.

Faralli, S.

Fu, S.

Goel, N.

Gold, M. P.

H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984).
[Crossref]

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Gu, L.

Hartog, A. H.

Hartog, H.

H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984).
[Crossref]

He, X.

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, Q.

Hu, X.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Ip, E.

Kim, B. Y.

Kotov, O. I.

Krebber, K.

Kumar, A.

Lam, H.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Lee, H.

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

Li, A.

Li, G.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Li, M. J.

Li, Q.

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

Liao, R.

Liehr, S.

Lin, C.

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

Liokumovich, L. B.

Liu, D.

Liu, F.

Lu, P.

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Masoudi, A.

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Analysis of distributed optical fibre acoustic sensors through numerical modelling,” Opt. Express 25(25), 32021–32040 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Mo, Q.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Muanenda, Y.

Muanenda, Y. S.

Münzenberger, S.

Newson, T. P.

A. Masoudi and T. P. Newson, “Analysis of distributed optical fibre acoustic sensors through numerical modelling,” Opt. Express 25(25), 32021–32040 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution,” Opt. Lett. 42(2), 290–293 (2017).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Oton, C. J.

Pan, Z.

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shieh, W.

Shum, P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Shum, P. P.

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Tang, M.

Tong, W.

Tseng, P.

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

Ushakov, N. A.

Varshney, R.

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Wang, M.

Wang, R.

Wang, S.

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Wang, T.

Wang, Y.

Wang, Z.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Wei, H.

Weng, Y.

Wu, H.

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Xie, S.

Yang, C.

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Zhang, M.

Zhao, C.

Zhao, N.

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Zhao, Z.

Zheng, X.

Appl. Opt. (2)

J. Lightwave Technol. (2)

H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightwave Technol. 2(2), 76–82 (1984).
[Crossref]

A. Kumar, N. Goel, and R. Varshney, “Studies on a Few-Mode Fiber-Optic Strain Sensor Based on LP01-LP02 Mode Interference,” J. Lightwave Technol. 19(3), 358–362 (2001).
[Crossref]

J. Sens. (1)

Y. Muanenda, “Recent Advances in Distributed Acoustic Sensing Based on Phase-Sensitive Optical Time Domain Reflectometry,” J. Sens. 2018, 3897873 (2018).
[Crossref]

Laser Phys. (1)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (2)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Lam, J. Hu, and P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Q. Li, C. Lin, P. Tseng, and H. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]

Opt. Express (7)

A. Li, Q. Hu, and W. Shieh, “Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis,” Opt. Express 21(26), 31894–31906 (2013).
[Crossref] [PubMed]

A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
[Crossref] [PubMed]

Y. Weng, E. Ip, Z. Pan, and T. Wang, “Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers,” Opt. Express 23(7), 9024–9039 (2015).
[Crossref] [PubMed]

A. Masoudi and T. P. Newson, “Analysis of distributed optical fibre acoustic sensors through numerical modelling,” Opt. Express 25(25), 32021–32040 (2017).
[Crossref] [PubMed]

S. Liehr, Y. S. Muanenda, S. Münzenberger, and K. Krebber, “Relative change measurement of physical quantities using dual-wavelength coherent OTDR,” Opt. Express 25(2), 720–729 (2017).
[Crossref] [PubMed]

Y. Muanenda, S. Faralli, C. J. Oton, and F. Di Pasquale, “Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection,” Opt. Express 26(2), 687–701 (2018).
[Crossref] [PubMed]

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25(11), 12722–12732 (2017).
[Crossref] [PubMed]

Opt. Lett. (5)

Optik (Stuttg.) (1)

J. Chen, P. Lu, D. Liu, J. Zhang, S. Wang, and D. Chen, “Optical fiber curvature sensor based on few mode fiber,” Optik (Stuttg.) 125(17), 4776–4778 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, “Contributed Review: Distributed optical fibre dynamic strain sensing,” Rev. Sci. Instrum. 87(1), 011501 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Wang, H. Wu, X. Hu, N. Zhao, Q. Mo, and G. Li, “Rayleigh scattering in few-mode optical fibers,” Sci. Rep. 6(1), 35844 (2016).
[Crossref] [PubMed]

Other (2)

R. Singh, “Distributed Temperature Sensing (DTS) Market - Global Forecast to 2022,” Markets and Markets, 328799 (2016).

D. Davies, A. H. Hartog, and K. Kader, “Distributed vibration sensing system using multimode fiber,” U.S. Patent No. 7 668 411 B2, 23 Feb. (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup based on 2MF. EDFA, erbium-doped fiber amplifier; AOM, acousto-optic modulator; C, circulator; FBG, fiber Bragg grating; PD, photodetector; MMUX: Mode Multiplexer.
Fig. 2
Fig. 2 Details of the two-mode fiber under test. (a) Refractive index profile, (b) Extremely fine mesh size distribution of distribution of the fiber cross section (c,d) Simulated mode field distribution of the LP01 and LP11 modes
Fig. 3
Fig. 3 Time-domain Rayleigh backscattered traces from the two different LP01 – LP01 and LP01 - LP11 cases.
Fig. 4
Fig. 4 (a) 3D plot of the phase-detector output in time domain for LP01 Mode. (b) 3D plot of the FFT of the phase-detector output for LP01 Mode.
Fig. 5
Fig. 5 2D representation of the 3D diagram depicting the output of LP01 to LP01 and LP01 to LP11. (a) Frequency spectrum of the dynamic fluctuations at 1073m, showing a peak at 1500 Hz signal. (b) Spatial distribution of strain along the sensing fiber at 1500Hz.
Fig. 6
Fig. 6 Detected strain versus applied voltage for a 1.5 kHz sinusoidal signal. (a) LP01- LP01 (orange line), LP01-LP11 (blue line) and MZI (black dashed line); (b) averaged result (blue line) and MZI (black dashed line).
Fig. 7
Fig. 7 Frequency response of the PZT measured by the distributed sensor and MZI (dashed line). (a) LP01-LP01, (b) LP01-LP11.
Fig. 8
Fig. 8 Reduction of noise floor by combining the results from LP01-LP01 and LP01-LP11.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B νμ = 6 q ν Δ π 2 V 0 F 00 2 ( ρ ) F νμ 2 ( ρ )dρ
Δϕ=0.78 × εlβ
{ I 1 = I 0 [M+Ncos( Δ( t ) )], I 2 = I 0 [M+Ncos( Δ( t )+ 2π 3 )], I 3 = I 0 [ M+Ncos( Δ( t ) 2π 3 ) ].
Δ=arctan( I 3 ¯ I 2 ¯ 3   I 1 ¯ )

Metrics