Abstract

A swing ion-beam etching method to fabricate convex blazed gratings used in shortwave infrared hyperspectral imaging spectrometers is presented. This method solves the consistency problem of blaze angles by swing etching through the meridian direction of the gratings. The mathematical relationship of the curvature, aperture, and diffraction efficiency of convex gratings is studied to demonstrate the limitation of conventional translational lithography and the necessity of swing etching. A geometric model is built to analyze the influence of swinging speed and beam slit width on groove evolution. Convex gratings with a 45.5 gr/mm groove density, 67 mm aperture, 156.88 mm radius of curvature, and 2.2° blaze angle have been fabricated and measured where the peak and average diffraction efficiency in the shortwave infrared band reach 90% and 70%, respectively. Experimental results validate that high-efficiency convex gratings of small blaze angle and high groove consistency can be produced by swing etching, which satisfy the requirements for high spectral resolution and miniaturization of imaging spectrometers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region

Hui Lin, Lichao Zhang, Lifeng Li, Chunshui Jin, Hongjun Zhou, and Tonglin Huo
Opt. Lett. 33(5) 485-487 (2008)

Record high extreme-ultraviolet efficiency at near-normal incidence from a multilayer-coated polymer-overcoated blazed ion-etched holographic grating

M. P. Kowalski, R. G. Cruddace, K. F. Heidemann, R. Lenke, H. Kierey, T. W. Barbee, and W. R. Hunter
Opt. Lett. 29(24) 2914-2916 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
    [Crossref]
  2. X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Opt. Express 14(20), 9156–9168 (2006).
    [Crossref] [PubMed]
  3. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
    [Crossref]
  4. P. Z. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39(3), 808–816 (2000).
    [Crossref]
  5. G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
    [Crossref]
  6. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref] [PubMed]
  7. C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
    [Crossref]
  8. H. Zhang, T. Wu, L. Zhang, and P. Zhang, “Development of a portable field imaging spectrometer: application for the identification of sun-dried and sulfur-fumigated chinese herbals,” Appl. Spectrosc. 70(5), 879–887 (2016).
    [Crossref] [PubMed]
  9. X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
    [Crossref]
  10. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
    [Crossref]
  11. H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
    [Crossref]
  12. P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
    [Crossref] [PubMed]
  13. R. L. Lucke, “Out-of-plane dispersion in an Offner spectrometer,” Opt. Eng. 46(7), 073004 (2007).
    [Crossref]
  14. Y. Huang, D. Zhang, Z. Ni, and S. Zhuang, “Design of the convex grating imaging spectrometer,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TUP12_18.
    [Crossref]
  15. P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
    [Crossref]
  16. M. Okano, T. Yotsuya, H. Kikuta, Y. Hirai, and K. Yamamoto, “Optimization of diffraction grating profiles in fabrication by the electron-beam lithography,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed. (Optical Society of America, 2002), paper DTuD10.
  17. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41(13), 2390–2393 (2002).
    [Crossref] [PubMed]
  18. W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications,” Opt. Lett. 30(12), 1464–1466 (2005).
    [Crossref] [PubMed]
  19. P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
    [Crossref]
  20. Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).
  21. D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
    [Crossref]
  22. P. Mouroulis, F. Hartley, D. Wilson, V. White, A. Shori, S. Nguyen, M. Zhang, and M. Feldman, “Blazed grating fabrication through gray-scale Xray lithography,” Opt. Express 11(3), 270–281 (2003).
    [Crossref] [PubMed]
  23. Headwall Photonics Inc, Hyperspec-VNIR and Hyperspec-NIR, Integrated hyperspectral imaging sensors,” http://www.headwallphotonics.com/diffractive-optics-technology .
  24. F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
    [Crossref]
  25. C. Davis, J. Bowles, R. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10(4), 210–221 (2002).
    [Crossref] [PubMed]
  26. Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
    [Crossref]
  27. H. Lin and L. Li, “Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,” Appl. Opt. 47(33), 6212–6218 (2008).
    [Crossref] [PubMed]
  28. J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
    [Crossref]
  29. S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
    [Crossref]
  30. W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
    [Crossref]
  31. X. Tan, “Fabrication of high-efficiency ultraviolet blazed gratings by use of direct Ar2-CHF3 ion-beam etching through a rectangular photoresist mask,” Proc. SPIE 8191, 81910L (2011).
    [Crossref]
  32. B. de A. Mello, I. F. da Costa, C. R. A. Lima, and L. Cescato, “Developed profile of holographically exposed photoresist gratings,” Appl. Opt. 34(4), 597–603 (1995).
    [Crossref] [PubMed]
  33. J. A. Rayas, A. Martínez, R. Rodríguez-Vera, and S. Calixto, “Development in situ for gratings recorded in photoresist,” Appl. Opt. 42(34), 6877–6879 (2003).
    [Crossref] [PubMed]
  34. Y. Song, W. Wang, S. Jiang, Bayanheshig, and N. Zhang, “Weighted iterative algorithm for beam alignment in scanning beam interference lithography,” Appl. Opt. 56(31), 8669–8675 (2017).
    [Crossref] [PubMed]
  35. X. Zhao, W. Bayanheshig, W. Li, J. Yanxiu, Y. Song, X. Li, S. Jiang, and N. Wu, “Moiré alignment algorithm for an aberration-corrected holographic grating exposure system and error analysis,” Appl. Opt. 55(31), 8683–8689 (2016).
    [Crossref] [PubMed]

2018 (3)

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

2017 (2)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Y. Song, W. Wang, S. Jiang, Bayanheshig, and N. Zhang, “Weighted iterative algorithm for beam alignment in scanning beam interference lithography,” Appl. Opt. 56(31), 8669–8675 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
[Crossref]

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

2014 (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

2012 (2)

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
[Crossref] [PubMed]

2011 (1)

X. Tan, “Fabrication of high-efficiency ultraviolet blazed gratings by use of direct Ar2-CHF3 ion-beam etching through a rectangular photoresist mask,” Proc. SPIE 8191, 81910L (2011).
[Crossref]

2009 (1)

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

2008 (1)

2007 (1)

R. L. Lucke, “Out-of-plane dispersion in an Offner spectrometer,” Opt. Eng. 46(7), 073004 (2007).
[Crossref]

2006 (2)

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Opt. Express 14(20), 9156–9168 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (4)

P. Mouroulis, F. Hartley, D. Wilson, V. White, A. Shori, S. Nguyen, M. Zhang, and M. Feldman, “Blazed grating fabrication through gray-scale Xray lithography,” Opt. Express 11(3), 270–281 (2003).
[Crossref] [PubMed]

J. A. Rayas, A. Martínez, R. Rodríguez-Vera, and S. Calixto, “Development in situ for gratings recorded in photoresist,” Appl. Opt. 42(34), 6877–6879 (2003).
[Crossref] [PubMed]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

2002 (2)

2000 (1)

P. Z. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39(3), 808–816 (2000).
[Crossref]

1998 (2)

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

1996 (1)

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

1995 (1)

1975 (1)

J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
[Crossref]

Angrilli, F.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Arnold, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Babin, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Backlund, J.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

Barucci, M. A.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Bauer, A.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Bayanheshig,

Bayanheshig, W.

Bayanheshig, X.

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Bayanheshig, X. L.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Bearman, G.

Bellucci, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Bianchini, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Bibring, J.-P.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Bissett, P.

Bockelee-Morvan, D.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Bowles, J.

Bussoletti, E.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Cabrini, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Calafiore, G.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Calcutt, S. B.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Calixto, S.

Cantagrel, M.

J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
[Crossref]

Capaccioni, F.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Caponi, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Capria, M. T.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Carlson, R. W.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Carsenty, U.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Cerroni, P.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Cescato, L.

Chen, S.

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

Chen, W.

Chen, X.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Cheng, J. X.

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Christenson, T. R.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

Colangeli, L.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Combes, J.-M.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Combi, M.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Coradini, A.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Couce, B.

Crovisier, J.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Cui, J.

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

Cu-Nguyen, P. H.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

da Costa, I. F.

Davis, C.

de A. Mello, B.

de la Fuente, R.

De Sanctis, M. C.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Dhuey, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Downes, T. V.

Drossart, P.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Ducommun, J. P.

J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
[Crossref]

Dufva, M.

C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
[Crossref]

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Encrenaz, T.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Feldman, M.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

P. Mouroulis, F. Hartley, D. Wilson, V. White, A. Shori, S. Nguyen, M. Zhang, and M. Feldman, “Blazed grating fabrication through gray-scale Xray lithography,” Opt. Express 11(3), 270–281 (2003).
[Crossref] [PubMed]

Feßer, P.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

Fink, U.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Fioretto, D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Fisher, J.

Fonti, S.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Formisano, V.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Gao, J.

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Gao, L.

Goltsov, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Gong, Q.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Grewe, A.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

Hamamoto, T.

Hartley, F.

Hartley, F. T.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

Ip, W.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Jennings, D. E.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Ji, Y.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Jiang, L.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

Jiang, S.

Jiang, Y. X.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Jiao, Q. B.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Johnson, W. R.

Kong, N.

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Korwan, D.

Koshelev, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Kristensen, A.

C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
[Crossref]

Langevin, Y.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Leathers, R.

Li, B. B.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Li, C.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Li, L.

Li, W.

X. Zhao, W. Bayanheshig, W. Li, J. Yanxiu, Y. Song, X. Li, S. Jiang, and N. Wu, “Moiré alignment algorithm for an aberration-corrected holographic grating exposure system and error analysis,” Appl. Opt. 55(31), 8683–8689 (2016).
[Crossref] [PubMed]

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Li, W. H.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Li, X.

Liao, C. S.

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Lima, C. R. A.

Lin, H.

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

H. Lin and L. Li, “Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask,” Appl. Opt. 47(33), 6212–6218 (2008).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Liu, Y.

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

Lucke, R. L.

R. L. Lucke, “Out-of-plane dispersion in an Offner spectrometer,” Opt. Eng. 46(7), 073004 (2007).
[Crossref]

Magni, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Maker, P. D.

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

Martínez, A.

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

McCord, T. B.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

McKerns, M. M.

P. Z. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39(3), 808–816 (2000).
[Crossref]

Mennella, V.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Michaelis, H.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Montero-Orille, C.

Mottola, S.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Moulin, M.

J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
[Crossref]

Mouroulis, P.

Mouroulis, P. Z.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

P. Z. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39(3), 808–816 (2000).
[Crossref]

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

Muller, R. E.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

Neukum, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Nguyen, S.

Peroz, C.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Peters, G.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Prieto-Blanco, X.

Qi, X.

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

Qiu, C. W.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Rayas, J. A.

Reess, J.-M.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Reininger, F. M.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Reisse, R. A.

Rhea, W.

Rodríguez-Vera, R.

Rolland, J. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Saggin, B.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Sasorov, P.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Schade, U.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Schmitt, B.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Seifert, A.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

Semery, A.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Shen, W.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Shiono, T.

Shori, A.

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

P. Mouroulis, F. Hartley, D. Wilson, V. White, A. Shori, S. Nguyen, M. Zhang, and M. Feldman, “Blazed grating fabrication through gray-scale Xray lithography,” Opt. Express 11(3), 270–281 (2003).
[Crossref] [PubMed]

Sinzinger, S.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

Smith, R. T.

Snyder, W.

Song, Y.

Takahara, K.

Tan, X.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

X. Tan, “Fabrication of high-efficiency ultraviolet blazed gratings by use of direct Ar2-CHF3 ion-beam etching through a rectangular photoresist mask,” Proc. SPIE 8191, 81910L (2011).
[Crossref]

Tang, S. J.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Tang, Y.

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Taylor, F. W.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Thomas, D. A.

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

Thompson, K. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Tiphene, D.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Tkaczyk, T. S.

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Vannahme, C.

C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
[Crossref]

Vellacott, T.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Venters, P.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

Wang, P.

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

Wang, W.

Watkins, R. E. J.

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

White, V.

Wilson, D.

Wilson, D. W.

W. R. Johnson, D. W. Wilson, and G. Bearman, “All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications,” Opt. Lett. 30(12), 1464–1466 (2005).
[Crossref] [PubMed]

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

P. Mouroulis, D. W. Wilson, P. D. Maker, and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” Appl. Opt. 37(31), 7200–7208 (1998).
[Crossref] [PubMed]

Wu, J.

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

Wu, N.

X. Zhao, W. Bayanheshig, W. Li, J. Yanxiu, Y. Song, X. Li, S. Jiang, and N. Wu, “Moiré alignment algorithm for an aberration-corrected holographic grating exposure system and error analysis,” Appl. Opt. 55(31), 8683–8689 (2016).
[Crossref] [PubMed]

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Wu, T.

Xiao, Y. F.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Xing, S.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Yang, S.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Yankov, V.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

Yanxiu, J.

Yu, H.

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Yu, X. C.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

Zappe, H.

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

Zhang, C.

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, M.

Zhang, N.

Zhang, P.

Zhao, X.

Zhao, X. L.

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Zhi, Y.

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

AIP Adv. (1)

S. Yang, X. L. Bayanheshig, X. L. Zhao, S. Xing, Y. X. Jiang, N. Wu, Q. B. Jiao, W. H. Li, and X. Tan, “Establishment and experimental verification of the photoresist model considering interface slip between photoresist and concave spherical substrate,” AIP Adv. 5(7), 077103 (2015).
[Crossref]

Appl. Opt. (7)

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

J. Mater. Sci. (1)

J. P. Ducommun, M. Cantagrel, and M. Moulin, “Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation,” J. Mater. Sci. 10(1), 52–62 (1975).
[Crossref]

Light Sci. Appl. (7)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3(9), e203 (2014).
[Crossref]

C. Vannahme, M. Dufva, and A. Kristensen, “High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor,” Light Sci. Appl. 4(4), e269 (2015).
[Crossref]

X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light Sci. Appl. 7(4), 18003 (2018).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

H. Lin, C. S. Liao, P. Wang, N. Kong, and J. X. Cheng, “Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion,” Light Sci. Appl. 7(5), 17179 (2018).
[Crossref]

P. H. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic microlenses,” Light Sci. Appl. 5(4), e16058 (2016).
[Crossref]

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Opt. Eng. (2)

P. Z. Mouroulis and M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39(3), 808–816 (2000).
[Crossref]

R. L. Lucke, “Out-of-plane dispersion in an Offner spectrometer,” Opt. Eng. 46(7), 073004 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Precision Eng. (1)

Y. Liu, J. Cui, S. Chen, X. Qi, and Y. Tang, “Design and application of imaging spectrometer with convex grating,” Opt. Precision Eng. 20(1), 52–57 (2012).

Proc. SPIE (7)

D. W. Wilson, P. D. Maker, R. E. Muller, P. Z. Mouroulis, and J. Backlund, “Recent advances in blazed grating fabrication by electron-beam lithography,” Proc. SPIE 5173, 115–126 (2003).
[Crossref]

Q. Liu, Y. Ji, J. Wu, X. Chen, C. Li, and W. Shen, “Study on convex grating in hyperspectral imaging spectrometers,” Proc. SPIE 7494, 74940N (2009).
[Crossref]

F. M. Reininger, A. Coradini, F. Capaccioni, M. T. Capria, P. Cerroni, M. C. De Sanctis, G. Magni, P. Drossart, M. A. Barucci, D. Bockelee-Morvan, J.-M. Combes, J. Crovisier, T. Encrenaz, J.-M. Reess, A. Semery, D. Tiphene, G. Arnold, U. Carsenty, H. Michaelis, S. Mottola, G. Neukum, G. Peters, U. Schade, F. W. Taylor, S. B. Calcutt, T. Vellacott, P. Venters, R. E. J. Watkins, G. Bellucci, V. Formisano, F. Angrilli, G. Bianchini, B. Saggin, E. Bussoletti, L. Colangeli, V. Mennella, S. Fonti, J.-P. Bibring, Y. Langevin, B. Schmitt, M. Combi, U. Fink, T. B. McCord, W. Ip, R. W. Carlson, and D. E. Jennings, “VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission,” Proc. SPIE 2819, 66–77 (1996).
[Crossref]

W. Li, X. Bayanheshig, C. Zhang, J. Gao, H. Yu, and Y. Tang, “Application of photoresist melting method to the fabrication of holographic grating,” Proc. SPIE 6024, 60242A (2006).
[Crossref]

X. Tan, “Fabrication of high-efficiency ultraviolet blazed gratings by use of direct Ar2-CHF3 ion-beam etching through a rectangular photoresist mask,” Proc. SPIE 8191, 81910L (2011).
[Crossref]

P. Z. Mouroulis, F. T. Hartley, R. E. Muller, D. W. Wilson, A. Shori, M. Feldman, L. Jiang, and T. R. Christenson, “Grating fabrication through x-ray lithography,” Proc. SPIE 5173, 108–114 (2003).
[Crossref]

P. Z. Mouroulis and D. A. Thomas, “Compact low-distortion imaging spectrometer for remote sensing,” Proc. SPIE 3438, 31–37 (1998).
[Crossref]

Other (3)

M. Okano, T. Yotsuya, H. Kikuta, Y. Hirai, and K. Yamamoto, “Optimization of diffraction grating profiles in fabrication by the electron-beam lithography,” in Diffractive Optics and Micro-Optics, R. Magnusson, ed. (Optical Society of America, 2002), paper DTuD10.

Y. Huang, D. Zhang, Z. Ni, and S. Zhuang, “Design of the convex grating imaging spectrometer,” in Conference on Lasers and Electro-Optics/Pacific Rim 2009, (Optical Society of America, 2009), paper TUP12_18.
[Crossref]

Headwall Photonics Inc, Hyperspec-VNIR and Hyperspec-NIR, Integrated hyperspectral imaging sensors,” http://www.headwallphotonics.com/diffractive-optics-technology .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Sketch of convex grating grooves etched by parallel ion beam.
Fig. 2
Fig. 2 (a) Schematic diagram of convex surface etched by ion beam. (b) Principal cross-section diagram of the convex grating in the meridian direction.
Fig. 3
Fig. 3 Diffraction efficiency-wavelength curves. (a) Comparison of diffraction efficiency between ideal grooves and rectangular mask grating; (b)–(f) Comparison of diffraction efficiency between ideal grooves and calculated results of grazing angle θ 2°–8° and τ 0.05–0.5.
Fig. 4
Fig. 4 (a) Sketch of swing ion-beam etching; (b) Partition method in sagittal direction.
Fig. 5
Fig. 5 Comparison of diffraction efficiency between gratings with completely consistent blaze angles and gratings by swing etching. (a) τ = 0.4, θ0 = 3.5°; (b) τ = 0.5, θ0 = 8°.
Fig. 6
Fig. 6 Groove evolution under ideal condition.
Fig. 7
Fig. 7 Parameters of swing etching model.
Fig. 8
Fig. 8 Groove evolution when the slit width is bigger than the critical width.
Fig. 9
Fig. 9 3D profile images of samples No.1−4 measured by AFM.
Fig. 10
Fig. 10 Measured (solid) and simulated (dashed) cross-section images of samples No.1−4.
Fig. 11
Fig. 11 Measured and calculated results of diffraction efficiency of samples No.1−4.
Fig. 12
Fig. 12 AFM images: (a) 3D surface profile of sample No.5; (b) 3D surface profile of sample No. 6;(c) cross-section profile of sample No.5; (d) cross-section profile of sample No.6.
Fig. 13
Fig. 13 Comparison between the measured and ideal diffraction efficiency of No.5 and No.6.
Fig. 14
Fig. 14 Cross-section diagrams at different locations on the grating surface by AFM.
Fig. 15
Fig. 15 AFM images of sample No.8: (a) 3D surface profile; (b) cross-section image.
Fig. 16
Fig. 16 (a) Comparison between the measured diffraction efficiency of samples No.8, No.9 and No.10 with the ideal efficiency; (b) Photograph of a convex grating.

Tables (5)

Tables Icon

Table 1 The proportion of unetched area and the range of blaze angles γ under different parameters.

Tables Icon

Table 2 The deviation range of blaze angles γ under different parameters on grating surface while n = 1.

Tables Icon

Table 3 Designed parameters of the mask and convex grating

Tables Icon

Table 4 Swing etching parameters

Tables Icon

Table 5 Blaze angles at different locations on the substrate surface.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

x 2 + y 2 + z 2 = R 2 .
l=( 0,cos θ 0 ,sin θ 0 ).
n=( x,y,z ).
sinθ=cosϕ=cos n,l .
θ=arcsin( nl | n || l | )=arcsin( ycos θ 0 +zsin θ 0 R ).
sinθ=cosαcos θ 0 +sinαsin θ 0 =sin( θ 0 + 90 α ).
θ= θ 0 + 90 α.
γ= γ 0 +k( 90 α ) , ( 90 arcsin( L 2R )α 90 +arcsin( L 2R ) ).
η( γ 0 , λ )= [ 2arcsin( L 2R ) ] 1 90 arcsin( L 2R ) 90 +arcsin( L 2R ) η( α,λ )dα .
ψ={ ( arcsin( L/ (2R) ) θ 0 )/ ( 2arcsin( L/ (2R) ) ) θ 0 <arcsin( L/ (2R) ) 0 θ 0 >arcsin( L/ (2R) ) .
θ=arcsin( sinβsin θ 0 ).
γ=karcsin( sinβsin θ 0 ).
90 1 n arcsin( L 2R )β 90 + 1 n arcsin( L 2R ).
karcsin( cos( 1 n arcsin( L 2R ) )sin θ 0 )γ γ 0 .
η( γ 0 ,λ )= η n =n [ arcsin( L 2R ) ] 1 0 1 n arcsin( L 2R ) η( β,λ ) dα.
h/w = V h / V w .
tan θ 0 =h/ (dw).
V γ / sinγ = V h / tan θ 0 .
sin θ 0 θ 0 tan θ 0 .
{ V h = k h θ 0 V w = k w θ 0 + V 0 V γ = k γ ( θ 0 γ ) V β = k β ( 90 θ 0 β )+ V 0 .
γ= k γ θ 0 / ( k γ + k h ) .
T= θ grating T e / ( Δθ+min{ Δθ, θ 0 } ) .
T e =n t n =n ( Δθ+min{ Δθ, θ 0 } )/ω .
D=2Rsin( ( Δθ+min{ Δθ, θ 0 } )/2 ).
h= V h T e = k h θ 0 n t n .
w= V w T e =( k w θ 0 + V 0 )n t n .
θ ( t )= θ 0 Δθ+ωt , t[ 0, t n ] .
h n = 0 t n V h ( t )dt= 0 t n k h ( θ 0 Δθ+ωt )dt= k h θ 0 t n .
w n = 0 t n V w ( t )dt= 0 t n [ k w ( θ 0 Δθ+ωt )+ V 0 ] dt=( k w θ 0 + V 0 ) t n .
h =n h n = k h θ 0 n t n =h.
w =n w n =( k w θ 0 + V 0 )n t n =w.
θ ( t )=ωt , t[ 0, t n ] .
h n = 0 t n V h ( t )dt= 0 t n k h ωtdt=[ k h ( Δθ+ θ 0 )/2 ] t n .
w n = 0 t n V w ( t )dt= 0 t n [ k w ωt+ V 0 ] dt=( k w ( Δθ+ θ 0 )/2 + V 0 ) t n .
V h = h n / t n = k h θ 0 + k h ( Δθ θ 0 )/2 > V h .
V w = w n / t n = k w θ 0 + V 0 + k w ( Δθ θ 0 )/2 > V w .
γ = k γ k γ + k h Δθ+ θ 0 2 .
h =[ k h ( Δθ+ θ 0 )/2 ] T 1 =h.
w =( k w ( Δθ+ θ 0 )/2 + V 0 ) T 1 .
T 1 = 2 θ 0 T e / ( Δθ+ θ 0 ) .
w 1 =w w = V 0 T e ( Δθ θ 0 )/ ( Δθ+ θ 0 ) .
w 2 = w 1 +( d w 1 h 1 k γ (Δθ+ θ 0 ) 2 V γ sin γ V β sin β )( T e T 1 ).