Abstract

We present here a new method for shaping a pulsed IR (λ = 1550nm) laser beam in silicon. The shaping is based on the plasma dispersion effect (PDE). The shaping is done by a second pulsed pump laser beam at 532nm (in either a Gaussian mode or a donut mode) which simultaneously and collinearly illuminates the silicon’s surface with the IR beam. Following the PDE, and in proportion to its spatial intensity distribution, the 532nm laser beam shapes the point spread function (PSF) by controlling the lateral transmission of the IR probe beam. The use of this probe in a laser scanning microscope allows imaging and a wide range of contactless electrical measurements in silicon integrated circuits (IC) being under operation. We propose this shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double-helix enhanced axial localization in STED nanoscopy

G. P. J. Laporte, D. B. Conkey, A. Vasdekis, R. Piestun, and D. Psaltis
Opt. Express 21(25) 30984-30992 (2013)

Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS)

Marcel Leutenegger, Christian Ringemann, Theo Lasser, Stefan W. Hell, and Christian Eggeling
Opt. Express 20(5) 5243-5263 (2012)

Orientational effects in the excitation and de-excitation of single molecules interacting with donut-mode laser beams

Peter Dedecker, Benoît Muls, Johan Hofkens, Jörg Enderlein, and Jun-ichi Hotta
Opt. Express 15(6) 3372-3383 (2007)

References

  • View by:
  • |
  • |
  • |

  1. É. Verdet, Leçons D’optique Physique (1869).
  2. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
    [Crossref]
  3. L. R. S. R. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” Philos. Mag. Ser. 5 42(255), 167–195 (1896).
    [Crossref]
  4. S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
    [Crossref]
  5. L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
    [Crossref] [PubMed]
  6. M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
    [Crossref] [PubMed]
  7. B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
    [Crossref] [PubMed]
  8. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  10. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
    [Crossref] [PubMed]
  11. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
    [Crossref] [PubMed]
  12. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  13. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
    [Crossref] [PubMed]
  14. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [Crossref]
  15. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
    [Crossref] [PubMed]
  16. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  17. H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
    [Crossref] [PubMed]
  18. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
    [Crossref] [PubMed]
  19. D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
    [Crossref] [PubMed]
  20. S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
    [Crossref] [PubMed]
  21. Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
    [Crossref]
  22. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
    [Crossref]
  23. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [Crossref] [PubMed]
  24. V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
    [Crossref] [PubMed]
  25. O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
    [Crossref] [PubMed]
  26. S. K. Garth, Y. H. Chen, and A. E. Stephens, “Effects of Dislocation and Bulk Micro Defects on Device Leakage,” SEMICON Taiwan (2001).
  27. C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
    [Crossref]
  28. L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
    [Crossref]
  29. L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.
  30. H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
    [Crossref]
  31. S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
    [Crossref]
  32. C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.
  33. H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).
  34. “Private communication, Intel Inc. R&D center, Haifa, Israel,” Priv. Commun. Intel Inc. R&D center, Haifa, Isr. (n.d.).
  35. “ https://www.fei.com/products/efa/meridian-v-for-semiconductors/ ,” (n.d.).
  36. “ http://checkpointtechnologies.com/products/#infrascan-ltm ,” (n.d.).
  37. H. Pinhas, L. Bidani, O. Baharav, M. Sinvani, M. Danino, and Z. Zalevsky, “All optical modulator based on silicon resonator,” in SPIE (2015), 9609, p. 96090L.
  38. H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
    [Crossref]
  39. R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
    [Crossref]
  40. R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).
  41. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  42. G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, 2008).
  43. “Alphalas PLDD-20M 1550nm pulsed laser (Goettingen Germany, http://www.alphalas.com/ ),” (n.d.).
  44. “Crystalaser QL532-025 532nm pulsed laser (Reno,Nevada, United States, http://crystalaser.com/ ),” (n.d.).
  45. “Ophir SP620U Laser beam analyzer (Jerusalem, Israel, http://www.ophiropt.com/ ),” (n.d.).
  46. “FLIR SC2500 InGaAs camera (Wilsonville, Oregon, United States, http://www.flir.eu/home/ ),” (n.d.).
  47. W. Y. Lo and S. M. Puchalski, “Digital image processing,” Vet. Radiol. Ultrasound 49(1), S42–S47 (2008).
    [Crossref] [PubMed]
  48. M. S. Tyagi and R. Van Overstraeten, “Minoriy carrier recombination in heavily-doped silicon,” Solid-State Electron. 26(6), 577–597 (1983).
    [Crossref]
  49. D. Alamo and R. M. Swanson, “Modelling of minority-carriers transport in heavily doped silicon emitters,” Solid State Electronics 30, 1127 (1987).
  50. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
    [Crossref]
  51. X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
    [Crossref]
  52. C. Jun and H.-J. Eichler, “Laser Beam Defocusing at 1.06 gm by Carrier Excitation in Silicon,” Appl. Phys. B 45(3), 121–124 (1988).
    [Crossref]
  53. T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
    [Crossref]
  54. V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
    [Crossref]
  55. Holo-OR VL-209-Q-Y-A Vortex Lens - spiral phase plate (Ness Ziona, Israel, http://www.holoor.co.il/Diffractive_Optics_Products/Diffractive_Vortex_Lens/Vortex-lens.php )
  56. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
    [Crossref]
  57. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

2017 (1)

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

2016 (2)

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
[Crossref]

2015 (1)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

2014 (3)

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

2013 (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

2012 (2)

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

2011 (1)

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

2010 (5)

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[Crossref] [PubMed]

H.-Y. Tsai, S. W. Thomas, and R. Menon, “Parallel scanning-optical nanoscopy with optically confined probes,” Opt. Express 18(15), 16014–16024 (2010).
[Crossref] [PubMed]

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

2009 (3)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

2008 (3)

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

W. Y. Lo and S. M. Puchalski, “Digital image processing,” Vet. Radiol. Ultrasound 49(1), S42–S47 (2008).
[Crossref] [PubMed]

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

2007 (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

2005 (2)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2002 (1)

S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
[Crossref]

2000 (1)

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
[Crossref]

1999 (1)

1994 (1)

1992 (2)

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

1988 (1)

C. Jun and H.-J. Eichler, “Laser Beam Defocusing at 1.06 gm by Carrier Excitation in Silicon,” Appl. Phys. B 45(3), 121–124 (1988).
[Crossref]

1987 (2)

D. Alamo and R. M. Swanson, “Modelling of minority-carriers transport in heavily doped silicon emitters,” Solid State Electronics 30, 1127 (1987).

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1986 (1)

H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
[Crossref]

1983 (1)

M. S. Tyagi and R. Van Overstraeten, “Minoriy carrier recombination in heavily-doped silicon,” Solid-State Electron. 26(6), 577–597 (1983).
[Crossref]

1975 (1)

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

1896 (1)

L. R. S. R. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” Philos. Mag. Ser. 5 42(255), 167–195 (1896).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Aharoni, R.

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Alamo, D.

D. Alamo and R. M. Swanson, “Modelling of minority-carriers transport in heavily doped silicon emitters,” Solid State Electronics 30, 1127 (1987).

Alberigi-Quaranta, A.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Auguste, T.

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

Azoulai, M.

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Babcock, H.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Baharav, O.

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Beeker, W. P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Beyreuther, A.

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

Bidani, L.

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

Biris, A. S.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Bloom, D. M.

H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
[Crossref]

Boit, C.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).

Boller, K.-J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Canali, C.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Cheng, J.-X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Cheshnovsky, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Chu, S.-W.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Chua, C. M.

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

Cleff, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Danan, Y.

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

Danino, M.

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

Dervishi, E.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Eichler, H.-J.

C. Jun and H.-J. Eichler, “Laser Beam Defocusing at 1.06 gm by Carrier Excitation in Silicon,” Appl. Phys. B 45(3), 121–124 (1988).
[Crossref]

Elbaz, D.

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

Fallnich, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Fernández-Suárez, M.

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Fujita, K.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Glowacki, A.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Gololobov, V. M.

V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
[Crossref]

Groß, P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Gross, P.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Haglund, R. F.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Heinrich, H. K.

H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
[Crossref]

Heintzmann, R.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Hell, S.

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954–956 (1999).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hemenway, B. R.

H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
[Crossref]

Herek, J. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Huang, B.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

Huang, Y.-T.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Ilovitsh, T.

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Iwaki, Y.

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

Jacoboni, C.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Jun, C.

C. Jun and H.-J. Eichler, “Laser Beam Defocusing at 1.06 gm by Carrier Excitation in Silicon,” Appl. Phys. B 45(3), 121–124 (1988).
[Crossref]

Kasapi, S.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Kawata, S.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Kerns, D.

S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
[Crossref]

Kerns, S.

S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
[Crossref]

Kerst, U.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

Kindereit, U.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Kiyan, T.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Klar, T. A.

Koh, L. S.

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

Kononenko, V. V.

V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
[Crossref]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Kruse, K.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Lee, C. J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Lee, H.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Lee, M.-Y.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Leonhardt, H.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Liu, D.

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

Lo, W. Y.

W. Y. Lo and S. M. Puchalski, “Digital image processing,” Vet. Radiol. Ultrasound 49(1), S42–S47 (2008).
[Crossref] [PubMed]

Lohmann, A. W.

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
[Crossref]

Lohrke, H.

H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

Lompré, L.-A.

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

Lu, J.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Lundquist, T.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Mainfray, G.

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

Malka, D.

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

Manus, C.

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

Marks, H.

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

Marvel, R. E.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Mendlovic, D.

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
[Crossref]

Menon, R.

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Monot, P.

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

Nava, F.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Ni, X. W.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Offerhaus, H. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Oketani, R.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Ottaviani, G.

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Pevzner, A.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Phang, J. C.

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

Pinhas, H.

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[Crossref] [PubMed]

Puchalski, S. M.

W. Y. Lo and S. M. Puchalski, “Digital image processing,” Vet. Radiol. Ultrasound 49(1), S42–S47 (2008).
[Crossref] [PubMed]

Raghunathan, V.

Ramon, Y.

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

Rayleigh, L. R. S. R.

L. R. S. R. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” Philos. Mag. Ser. 5 42(255), 167–195 (1896).
[Crossref]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Ross, L. K.

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sayil, S.

S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
[Crossref]

Schermelleh, L.

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

Schlangen, R.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Scholz, P.

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

Seifert, J. P.

H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).

Shen, Z. H.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Sinvani, M.

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Stelzer, E. H. K.

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Su, T.-Y.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Suzuki, H.

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Swanson, R. M.

D. Alamo and R. M. Swanson, “Modelling of minority-carriers transport in heavily doped silicon emitters,” Solid State Electronics 30, 1127 (1987).

Tajik, S.

H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).

Thomas, S. W.

Ting, A. Y.

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Tsai, H.-Y.

Tyagi, M. S.

M. S. Tyagi and R. Van Overstraeten, “Minoriy carrier recombination in heavily-doped silicon,” Solid-State Electron. 26(6), 577–597 (1983).
[Crossref]

Tzang, O.

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Van Overstraeten, R.

M. S. Tyagi and R. Van Overstraeten, “Minoriy carrier recombination in heavily-doped silicon,” Solid-State Electron. 26(6), 577–597 (1983).
[Crossref]

Verdet, É.

É. Verdet, Leçons D’optique Physique (1869).

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

Wichmann, J.

Wu, H.-Y.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yamanaka, M.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Yang, C.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Yonemaru, Y.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Zalevsky, Z.

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
[Crossref]

Zavedeev, E. V.

V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
[Crossref]

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Zhuang, X.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zhuo, G.-Y.

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Adv. Radio Sci (1)

C. Boit, R. Schlangen, A. Glowacki, U. Kindereit, T. Kiyan, U. Kerst, T. Lundquist, S. Kasapi, and H. Suzuki, “Physical IC debug – backside approach and nanoscale challenge,” Adv. Radio Sci 6, 265–272 (2008).
[Crossref]

Appl. Phys. B (1)

C. Jun and H.-J. Eichler, “Laser Beam Defocusing at 1.06 gm by Carrier Excitation in Silicon,” Appl. Phys. B 45(3), 121–124 (1988).
[Crossref]

Appl. Phys. Lett. (1)

H. K. Heinrich, D. M. Bloom, and B. R. Hemenway, “Noninvasive sheet charge density probe for integrated silicon devices,” Appl. Phys. Lett. 48(16), 1066–1068 (1986).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

V. V. Kononenko, E. V. Zavedeev, and V. M. Gololobov, “The effect of light-induced plasma on propagation of intense fs laser radiation in c-Si,” Appl. Phys., A Mater. Sci. Process. 122(4), 293 (2016).
[Crossref]

Arch. für Mikroskopische Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. für Mikroskopische Anat. 9(1), 413–418 (1873).
[Crossref]

Cell (1)

B. Huang, H. Babcock, and X. Zhuang, “Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells,” Cell 143(7), 1047–1058 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

L. Bidani, O. Baharav, M. Sinvani, and Z. Zalevsky, “Usage of Laser Timing Probe for Sensing of Programmed Charges in EEPROM Devices,” IEEE Trans. Device Mater. Reliab. 14(1), 304–310 (2014).
[Crossref]

Int. J. Electron. (1)

S. Sayil, D. Kerns, and S. Kerns, “All-silicon optical contactless testing of integrated circuits,” Int. J. Electron. 89(7), 537–547 (2002).
[Crossref]

J. Appl. Phys. (1)

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

J. Cell Biol. (1)

L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell Biol. 190(2), 165–175 (2010).
[Crossref] [PubMed]

J. Eur. Opt. Soc. (1)

R. Aharoni, O. Baharav, L. Bidani, M. Sinvani, D. Elbaz, and Z. Zalevsky, “All-optical silicon simplified passive modulation,” J. Eur. Opt. Soc. 7, 12029 (2012).

J. Eur. Opt. Soc. Publ. (1)

H. Pinhas, Y. Danan, M. Sinvani, M. Danino, and Z. Zalevsky, “Experimental characterization towards an in-fibre integrated silicon slab based all-optical modulator,” J. Eur. Opt. Soc. Publ. 13(1), 3 (2017).
[Crossref]

J. Nanophotonics (1)

Y. Danan, T. Ilovitsh, Y. Ramon, D. Malka, D. Liu, and Z. Zalevsky, “Silicon-coated gold nanoparticles nanoscopy,” J. Nanophotonics 10(3), 036015 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

O. Tzang, A. Pevzner, R. E. Marvel, R. F. Haglund, and O. Cheshnovsky, “Super-Resolution in Label-Free Photomodulated Reflectivity,” Nano Lett. 15(2), 1362–1367 (2015).
[Crossref] [PubMed]

Nat. Methods (2)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nat. Photonics (2)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7(6), 449–453 (2013).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref] [PubMed]

Open Opt. J. (1)

R. Aharoni, M. Sinvani, O. Baharav, M. Azoulai, and Z. Zalevsky, “Experimental Characterization of Photonic Fiber-Integrated Modulator,” Open Opt. J. 5(1), 40–45 (2011).
[Crossref]

Opt. Commun. (2)

T. Auguste, P. Monot, L.-A. Lompré, G. Mainfray, and C. Manus, “Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma,” Opt. Commun. 89(2-4), 145–148 (1992).
[Crossref]

S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93(5-6), 277–282 (1992).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. Ser. 5 (1)

L. R. S. R. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” Philos. Mag. Ser. 5 42(255), 167–195 (1896).
[Crossref]

Phys. Rev. A (1)

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 023825 (2012).
[Crossref]

Phys. Rev. B (1)

C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Electron drift velocity in silicon,” Phys. Rev. B 12(6), 2265–2284 (1975).
[Crossref]

Phys. Rev. Lett. (1)

S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, “Measurement of a Saturated Emission of Optical Radiation from Gold Nanoparticles: Application to an Ultrahigh Resolution Microscope,” Phys. Rev. Lett. 112(1), 017402 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Prog. Opt. (1)

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” Prog. Opt. 40, 271–341 (2000).
[Crossref]

Science (2)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Small (1)

D. A. Nedosekin, E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, “Super-Resolution Nonlinear Photothermal Microscopy,” Small 10(1), 135–142 (2014).
[Crossref] [PubMed]

Solid State Electronics (1)

D. Alamo and R. M. Swanson, “Modelling of minority-carriers transport in heavily doped silicon emitters,” Solid State Electronics 30, 1127 (1987).

Solid-State Electron. (1)

M. S. Tyagi and R. Van Overstraeten, “Minoriy carrier recombination in heavily-doped silicon,” Solid-State Electron. 26(6), 577–597 (1983).
[Crossref]

Vet. Radiol. Ultrasound (1)

W. Y. Lo and S. M. Puchalski, “Digital image processing,” Vet. Radiol. Ultrasound 49(1), S42–S47 (2008).
[Crossref] [PubMed]

Other (16)

L. S. Koh, H. Marks, L. K. Ross, C. M. Chua, and J. C. Phang, “Laser Timing Probe with Frequency Mapping for Locating Signal Maxima,” in 35th International Symposium for Testing and Failure Analysis (2009), pp. 33–37.

G. T. Reed, Silicon Photonics: The State of the Art (John Wiley & Sons, 2008).

“Alphalas PLDD-20M 1550nm pulsed laser (Goettingen Germany, http://www.alphalas.com/ ),” (n.d.).

“Crystalaser QL532-025 532nm pulsed laser (Reno,Nevada, United States, http://crystalaser.com/ ),” (n.d.).

“Ophir SP620U Laser beam analyzer (Jerusalem, Israel, http://www.ophiropt.com/ ),” (n.d.).

“FLIR SC2500 InGaAs camera (Wilsonville, Oregon, United States, http://www.flir.eu/home/ ),” (n.d.).

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

Holo-OR VL-209-Q-Y-A Vortex Lens - spiral phase plate (Ness Ziona, Israel, http://www.holoor.co.il/Diffractive_Optics_Products/Diffractive_Vortex_Lens/Vortex-lens.php )

S. K. Garth, Y. H. Chen, and A. E. Stephens, “Effects of Dislocation and Bulk Micro Defects on Device Leakage,” SEMICON Taiwan (2001).

C. Boit, H. Lohrke, P. Scholz, A. Beyreuther, U. Kerst, and Y. Iwaki, “Contactless visible light probing for nanoscale ICs through 10 μm bulk silicon,” in Proceedings of the 35th Annual NANO Testing Symposium (NANOTS2015) (2015), pp. 215–221.

H. Lohrke, S. Tajik, C. Boit, and J. P. Seifert, No Place to Hide: Contactless Probing of Secret Data on FPGAs (2016).

“Private communication, Intel Inc. R&D center, Haifa, Israel,” Priv. Commun. Intel Inc. R&D center, Haifa, Isr. (n.d.).

“ https://www.fei.com/products/efa/meridian-v-for-semiconductors/ ,” (n.d.).

“ http://checkpointtechnologies.com/products/#infrascan-ltm ,” (n.d.).

H. Pinhas, L. Bidani, O. Baharav, M. Sinvani, M. Danino, and Z. Zalevsky, “All optical modulator based on silicon resonator,” in SPIE (2015), 9609, p. 96090L.

É. Verdet, Leçons D’optique Physique (1869).

Supplementary Material (1)

NameDescription
» Visualization 1       video that shows lateral and temporal behavior between probe and pump beams

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustrations of the principle of the proposed two beam shaping methods. a) A narrow pump Gaussian beam at 532 nm, creates a hole in the middle of a wider IR beam. (b) Donut shape 532 nm pump beam blocks the periphery of the IR beam Gaussian and transmits a narrow beam in its center only.
Fig. 2
Fig. 2 The experimental setup.
Fig. 3
Fig. 3 The dip in the IR probe Gaussian beam induced by the green pump beam. (a) The image of the transmitted Gaussian probe beam with its profile. (b), the probe beam shaped by the pump beam superimposed on it to create a dip in its center (see Visualization 1 for video that shows lateral and temporal behavior between probe and pump beams). One diffraction limit unit is 600 μm.
Fig. 4
Fig. 4 Probe Gaussian IR laser beam at the diffraction limit scan across a 3-bars target (with a period of 500 μm,) in two cases: (a). without the pump beam, as in Fig. 3(a), which shows unresolved target. The second case (b) is a scan of the target with the pump beam, with the dip in it, shows super-resolution where the target is well resolved. The red lines are the direct scan results and the blue lines are the direct scan results deconvoluted with the probe beam.
Fig. 5
Fig. 5 The spectral response enhancement of the shaped probe beam compared to the unshaped beam.
Fig. 6
Fig. 6 The dip depth as a function of pump pulse energy. (a) - The profiles of the probe beam – without pump (black Gaussian) and with different 5 pump pulse intensities (the color traces). (b) - The dip depth as a function of the pump laser pulse energy – experimental (the blue circles), calculations via the PDE + FP (dashed black line), and calculation of FCC absorption only (red line).
Fig. 7
Fig. 7 Defocusing observed in the experiment compared to simple subtraction of a narrow Gaussian from a wider one. (a) The probe beam in the experiment, without the pump beam (red line) and with the pump beam (blue line). (b), Mathematical subtraction (blue line) of pump (green line) Gaussians from probe (red) Gaussian.
Fig. 8
Fig. 8 “Silicon Photonics STED”: Preliminary experiment. (a) The donut shape pump beam. (b) The probe beam with (red dashed) and without (blue line) the donut pump on it.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn=8.8 10 22 Δ N e 8.5 10 18 Δ N h 0.8
Δα=8.5 10 18 Δ N e +6.0 10 18 Δ N h .
I out I in = (1R) 2 e (Δα)d (1R e (Δα)d ) 2 +4R e (Δα)d sin 2 ( 2π(nL+Δnd) λ ) ,

Metrics