Abstract

We show that a variety of white powder samples, including painkillers, amino acids, stimulants and sugars are readily discriminated by diffuse reflectance infrared spectroscopy involving no preparation of the sample and no physical contact with it. Eleven powders were investigated by illuminating each sample with broadband coherent light in the 8–9-µm band from an OPGaP femtosecond optical parametric oscillator. The spectra of the scattered light were obtained using Fourier-transform spectroscopy. Similarities between different spectra were quantified using Pearson’s correlation coefficient, confirming that spectral features in the 8–9-µm wavelength region were sufficient to discriminate between all eleven powders evaluated in the study, offering a route to simple and automated non-contact chemical detection.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer

Chase A. Munson, Jennifer L. Gottfried, Emily Gibb Snyder, Frank C. De Lucia, Jr., Brian Gullett, and Andrzej W. Miziolek
Appl. Opt. 47(31) G48-G57 (2008)

Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.

Mark F. Witinski, Romain Blanchard, Christian Pfluegl, Laurent Diehl, Biao Li, Kalyani Krishnamurthy, Brandt C. Pein, Masud Azimi, Peili Chen, Gokhan Ulu, Greg Vander Rhodes, Chris R. Howle, Linda Lee, Rhea J. Clewes, Barry Williams, and Daryoosh Vakhshoori
Opt. Express 26(9) 12159-12168 (2018)

Multi-spectral infrared spectroscopy for robust plastic identification

Abraham Vázquez-Guardado, Mason Money, Nathaniel McKinney, and Debashis Chanda
Appl. Opt. 54(24) 7396-7405 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Deisingh, “Pharmaceutical counterfeiting,” Analyst (Lond.) 130(3), 271–279 (2005).
    [Crossref] [PubMed]
  2. S. Neuberger and C. Neusüß, “Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets,” J. Pharm. Biomed. Anal. 112, 70–78 (2015).
    [Crossref] [PubMed]
  3. W.-H. Su and D.-W. Sun, “Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review,” Compr. Rev. Food Sci. Food Saf. 17(1), 104–122 (2018).
    [Crossref]
  4. S. G. Kazarian and K. L. Chan, “Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia,” Appl. Spectrosc. 64(5), 135A–152A (2010).
    [Crossref] [PubMed]
  5. Smiths Detection, “HazMatID,” https://www.smithsdetection.com/products/hazmatid-elite/ .
  6. J. Grdadolnik, “ATR-FTIR spectroscopy: its advantages and limitations,” Acta Chim. Slov. 49, 631–642 (2002).
  7. G. Rasskazov, A. Ryabtsev, and M. Dantus, “Eye-safe near-infrared trace explosives detection and imaging,” Opt. Express 25(6), 5832–5840 (2017).
    [Crossref] [PubMed]
  8. R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
    [Crossref]
  9. M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
    [Crossref] [PubMed]
  10. L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
    [Crossref]
  11. L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
    [Crossref]
  12. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
    [Crossref] [PubMed]
  13. L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
    [Crossref]
  14. O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017).
    [Crossref]
  15. H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
    [Crossref]
  16. L. Maidment, Z. Zhang, C. R. Howle, and D. T. Reid, “Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy,” Opt. Lett. 41(10), 2266–2269 (2016).
    [Crossref] [PubMed]
  17. L. Maidment, P. G. Schunemann, R. J. Clewes, M. D. Bowditch, C. R. Howle, and D. T. Reid, “Systematic spectral shifts in the mid-infrared spectroscopy of aerosols,” Opt. Express 26(15), 18975–18981 (2018).
    [Crossref] [PubMed]
  18. D. T. Reid, O. Kara, M. Rutkauskas, and L. Maidment, “Chemical detection using broadband femtosecond optical parametric oscillators in the 6-12-µm spectral fingerprint region,” Proc. SPIE 10639, 106392D (2018).
  19. L. Maidment, R. A. McCracken, O. Kara, P. G. Schunemann, and D. T. Reid, “Identification of white powder samples using broadband coherent light in the molecular fingerprint region,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2018), paper ATh4O.6.
    [Crossref]
  20. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref] [PubMed]
  21. R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
    [Crossref]

2018 (6)

W.-H. Su and D.-W. Sun, “Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review,” Compr. Rev. Food Sci. Food Saf. 17(1), 104–122 (2018).
[Crossref]

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
[Crossref]

H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allison, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
[Crossref]

L. Maidment, P. G. Schunemann, R. J. Clewes, M. D. Bowditch, C. R. Howle, and D. T. Reid, “Systematic spectral shifts in the mid-infrared spectroscopy of aerosols,” Opt. Express 26(15), 18975–18981 (2018).
[Crossref] [PubMed]

D. T. Reid, O. Kara, M. Rutkauskas, and L. Maidment, “Chemical detection using broadband femtosecond optical parametric oscillators in the 6-12-µm spectral fingerprint region,” Proc. SPIE 10639, 106392D (2018).

2017 (3)

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017).
[Crossref]

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

G. Rasskazov, A. Ryabtsev, and M. Dantus, “Eye-safe near-infrared trace explosives detection and imaging,” Opt. Express 25(6), 5832–5840 (2017).
[Crossref] [PubMed]

2016 (3)

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

L. Maidment, Z. Zhang, C. R. Howle, and D. T. Reid, “Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy,” Opt. Lett. 41(10), 2266–2269 (2016).
[Crossref] [PubMed]

L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
[Crossref] [PubMed]

2015 (2)

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

S. Neuberger and C. Neusüß, “Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets,” J. Pharm. Biomed. Anal. 112, 70–78 (2015).
[Crossref] [PubMed]

2014 (1)

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

2012 (1)

2010 (1)

2005 (1)

A. K. Deisingh, “Pharmaceutical counterfeiting,” Analyst (Lond.) 130(3), 271–279 (2005).
[Crossref] [PubMed]

2002 (1)

J. Grdadolnik, “ATR-FTIR spectroscopy: its advantages and limitations,” Acta Chim. Slov. 49, 631–642 (2002).

Allison, T. K.

Azimi, M.

Blanchard, R.

Boskovic, D.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Bowditch, M. D.

Butschek, L.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Carson, C.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Chan, A.

Chan, K. L.

Chen, P.

Clewes, R. J.

Cruz, F. C.

Dantus, M.

Deisingh, A. K.

A. K. Deisingh, “Pharmaceutical counterfeiting,” Analyst (Lond.) 130(3), 271–279 (2005).
[Crossref] [PubMed]

Diddams, S. A.

Diehl, L.

Freeman, M. J.

Fuchs, F.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Furstenberg, R.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

Gardiner, T.

Grahmann, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Grdadolnik, J.

J. Grdadolnik, “ATR-FTIR spectroscopy: its advantages and limitations,” Acta Chim. Slov. 49, 631–642 (2002).

Haertelt, M.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Howle, C. R.

Hugger, S.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Islam, M. N.

Jarvis, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Kara, O.

L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
[Crossref]

D. T. Reid, O. Kara, M. Rutkauskas, and L. Maidment, “Chemical detection using broadband femtosecond optical parametric oscillators in the 6-12-µm spectral fingerprint region,” Proc. SPIE 10639, 106392D (2018).

O. Kara, L. Maidment, T. Gardiner, P. G. Schunemann, and D. T. Reid, “Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators,” Opt. Express 25(26), 32713–32721 (2017).
[Crossref]

Kazarian, S. G.

Kendziora, C. A.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

Kowligy, A.

Krishnamurthy, K.

Kumar, M.

Lee, L.

Li, B.

Lind, A.

Macarthur, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Magarrell, D. J.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

Maidment, L.

Manzur, T.

McCarthy, J. C.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

McEwan, K.

L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
[Crossref]

McGill, R. A.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

Merten, A.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Nader, N.

Neelakandan, M.

Neuberger, S.

S. Neuberger and C. Neusüß, “Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets,” J. Pharm. Biomed. Anal. 112, 70–78 (2015).
[Crossref] [PubMed]

Neusüß, C.

S. Neuberger and C. Neusüß, “Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets,” J. Pharm. Biomed. Anal. 112, 70–78 (2015).
[Crossref] [PubMed]

Nguyen, V.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

Ostendorf, R.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Papantonakis, M. R.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

Papp, S. B.

Pein, B. C.

Pfluegl, C.

Piper, J.

L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
[Crossref]

Pomeranz, L. A.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

Rasskazov, G.

Rattunde, M.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Reid, D. T.

Rieblinger, K.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Rutkauskas, M.

D. T. Reid, O. Kara, M. Rutkauskas, and L. Maidment, “Chemical detection using broadband femtosecond optical parametric oscillators in the 6-12-µm spectral fingerprint region,” Proc. SPIE 10639, 106392D (2018).

Ryabtsev, A.

Schilling, C.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Schunemann, P. G.

Schwarzenberg, M.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Silfies, M.

Stothard, D.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Su, W.-H.

W.-H. Su and D.-W. Sun, “Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review,” Compr. Rev. Food Sci. Food Saf. 17(1), 104–122 (2018).
[Crossref]

Sun, D.-W.

W.-H. Su and D.-W. Sun, “Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review,” Compr. Rev. Food Sci. Food Saf. 17(1), 104–122 (2018).
[Crossref]

Terry, F. L.

Timmers, H.

Tybussek, T.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Ulu, G.

Vakhshoori, D.

Vander Rhodes, G.

Wagner, J.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Warden, M.

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Williams, B.

Witinski, M. F.

Yang, Q.

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Ycas, G.

Zawilski, K. T.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

Zelmon, D. E.

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

Zhang, Z.

Acta Chim. Slov. (1)

J. Grdadolnik, “ATR-FTIR spectroscopy: its advantages and limitations,” Acta Chim. Slov. 49, 631–642 (2002).

Analyst (Lond.) (1)

A. K. Deisingh, “Pharmaceutical counterfeiting,” Analyst (Lond.) 130(3), 271–279 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Maidment, O. Kara, P. G. Schunemann, J. Piper, K. McEwan, and D. T. Reid, “Long-wave infrared generation from femtosecond and picosecond optical parametric oscillators based on orientation-patterned gallium phosphide,” Appl. Phys. B 124(7), 143 (2018).
[Crossref]

Appl. Spectrosc. (1)

Compr. Rev. Food Sci. Food Saf. (1)

W.-H. Su and D.-W. Sun, “Fourier transform infrared and raman and hyperspectral imaging techniques for quality determinations of powdery foods: a review,” Compr. Rev. Food Sci. Food Saf. 17(1), 104–122 (2018).
[Crossref]

J. Pharm. Biomed. Anal. (1)

S. Neuberger and C. Neusüß, “Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets,” J. Pharm. Biomed. Anal. 112, 70–78 (2015).
[Crossref] [PubMed]

Opt. Eng. (1)

L. Butschek, S. Hugger, J. Jarvis, M. Haertelt, A. Merten, M. Schwarzenberg, J. Grahmann, D. Stothard, M. Warden, C. Carson, J. Macarthur, F. Fuchs, R. Ostendorf, and J. Wagner, “Microoptoelectromechanical systems-based external cavity quantum cascade lasers for real-time spectroscopy,” Opt. Eng. 57(01), 011010 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Photonics (1)

R. Ostendorf, L. Butschek, S. Hugger, F. Fuchs, Q. Yang, J. Jarvis, C. Schilling, M. Rattunde, A. Merten, J. Grahmann, D. Boskovic, T. Tybussek, K. Rieblinger, and J. Wagner, “Recent advances and applications of external cavity-QCLs towards hyperspectral imaging for standoff detection and real-time spectroscopic sensing of chemicals,” Photonics 3(2), 28 (2016).
[Crossref]

Proc. SPIE (3)

L. A. Pomeranz, P. G. Schunemann, D. J. Magarrell, J. C. McCarthy, K. T. Zawilski, and D. E. Zelmon, “1-μm-pumped OPO based on orientation-patterned GaP,”Proc. SPIE 9347, 93470 (2015).
[Crossref]

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “The challenge of changing signatures in infrared stand-off detection of trace explosives,” Proc. SPIE 9073, 90730M (2014).
[Crossref]

D. T. Reid, O. Kara, M. Rutkauskas, and L. Maidment, “Chemical detection using broadband femtosecond optical parametric oscillators in the 6-12-µm spectral fingerprint region,” Proc. SPIE 10639, 106392D (2018).

Other (2)

L. Maidment, R. A. McCracken, O. Kara, P. G. Schunemann, and D. T. Reid, “Identification of white powder samples using broadband coherent light in the molecular fingerprint region,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2018), paper ATh4O.6.
[Crossref]

Smiths Detection, “HazMatID,” https://www.smithsdetection.com/products/hazmatid-elite/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scanning Michelson interferometer used to modulate the OPO idler beam (green) and the HeNe displacement-calibration beam (red). (b) Actual layout, with voice-coil actuator.
Fig. 2
Fig. 2 (a,b) Prepared powder samples, and (c) illumination geometry used in the experiment.
Fig. 3
Fig. 3 (a) Illumination spectra from three OPGaP grating periods (blue), and scattered from caffeine powder (red). (b–d) Spectral response (ratio of scattered / illumination spectra).
Fig. 4
Fig. 4 Columns 1, 3: Library spectra derived from 14 pairs of illumination- and scattered-light spectra and (offset) independently measured test spectrum for each of 11 powders. Columns 2, 4: Pearson’s correlation coefficients between each test spectrum and every member of the library data set, showing a consistent maximum average correlation coefficient (red) when the test and library spectra correspond to the same powder.
Fig. 5
Fig. 5 Correlation coefficients computed between the averaged spectral responses of the library spectra. The values of all the off-diagonal elements are much less than one, indicating the suitability of Pearson’s correlation coefficient as a metric to distinguish between spectra.

Tables (1)

Tables Icon

Table 1 Mean correlation coefficients of taurine, L-glutamine and creatine powders with library powders. Conclusive matching is shown in green, inconclusive in red. Powders with all coefficients < 0.5 are omitted.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r= i=1 n ( X i X ¯ )( Y i Y ¯ ) i=1 n ( X i X ¯ ) 2 i=1 n ( Y i Y ¯ ) 2

Metrics