Abstract

In this study, the realization of multiplexed volume Bragg gratings (VBGs) working as angle amplifiers in high power beam scanning system is theoretically and experimentally investigated. The design of the multiplexed VBG for the working wavelength of 1064 nm is described. We propose a cascaded multiplexed VBGs scheme that consists of 12 grating channels. Three 4-channel multiplexed VBGs were fabricated inside photo-thermo-refractive (PTR) glasses by multiple exposures and subsequent heat treatment. The test results show that this angle amplifier can achieve discrete angle deflection ranging from −45° to + 45°. The relative diffraction efficiency of all the grating channels is more than 80% and is almost polarization independent.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Method for precise evaluation of refractive index modulation amplitude inside the volume Bragg grating recorded in photo-thermo-refractive glass

Peng Chen, Dongbing He, Yunxia Jin, Junming Chen, Jingyin Zhao, Jiao Xu, Yibin Zhang, Fanyu Kong, and Hongbo He
Opt. Express 26(1) 157-164 (2018)

High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass

Zahid Yaqoob, Muzammil A. Arain, and Nabeel A. Riza
Appl. Opt. 42(26) 5251-5262 (2003)

Improving the spatial resolution of volume Bragg grating two-dimensional monochromatic images

Jiazhu Duan, Xiangjie Zhao, Yongquan Luo, and Dayong Zhang
Appl. Opt. 57(12) 3159-3165 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express 15(8), 4523–4529 (2007).
    [Crossref] [PubMed]
  2. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [Crossref]
  3. L. Wu, X. Wang, C. Xiong, Z. Huang, R. Zhuo, J. Rao, and Q. Tan, “Polarization-independent two-dimensional beam steering using liquid crystal optical phased arrays,” Chin. Opt. Lett. 15(10), 101601 (2017).
    [Crossref]
  4. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
    [Crossref] [PubMed]
  5. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref] [PubMed]
  6. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
    [Crossref]
  7. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [Crossref] [PubMed]
  8. F. Gao, X. Yuan, and X. Zhang, “Sidelobes suppression in angular filtering with volume Bragg gratings combination,” Chin. Opt. Lett. 14(6), 060502 (2016).
    [Crossref]
  9. A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
    [Crossref]
  10. Z. Yaqoob, M. A. Arain, and N. A. Riza, “High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass,” Appl. Opt. 42(26), 5251–5262 (2003).
    [Crossref] [PubMed]
  11. O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
    [Crossref]
  12. I. W. Smith and M. K. O. Holz, “Wide-angle beam steering system,” U.S. Patent No. 7,215,472 (2007).
  13. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  14. G. B. Ingersoll and J. R. Leger, “Spectral interference in multiplexed volume Bragg gratings: theoretical calculations and experimental verification,” Appl. Opt. 53(24), 5477–5485 (2014).
    [Crossref] [PubMed]
  15. O. M. Efimov, L. B. Glebov, and H. P. Andre, “Measurement of the induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41(10), 1864–1871 (2002).
    [Crossref] [PubMed]
  16. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
    [Crossref]
  17. L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
    [Crossref]
  18. P. Chen, D. He, Y. Jin, J. Chen, J. Zhao, J. Xu, Y. Zhang, F. Kong, and H. He, “Method for precise evaluation of refractive index modulation amplitude inside the volume Bragg grating recorded in photo-thermo-refractive glass,” Opt. Express 26(1), 157–164 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (1)

2014 (1)

2011 (1)

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

2007 (3)

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

A. Akatay and H. Urey, “Design and optimization of microlens array based high resolution beam steering system,” Opt. Express 15(8), 4523–4529 (2007).
[Crossref] [PubMed]

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

2006 (2)

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

2003 (1)

2002 (1)

1999 (2)

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
[Crossref]

1996 (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Abeysinghe, D. C.

Akatay, A.

Andre, H. P.

Aoki, S.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Arain, M. A.

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Cao, L.

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

Chen, J.

Chen, P.

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Efimov, O. M.

Escuti, M. J.

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Gao, F.

Glebov, A. L.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Glebov, L. B.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

O. M. Efimov, L. B. Glebov, and H. P. Andre, “Measurement of the induced refractive index in a photothermorefractive glass by a liquid-cell shearing interferometer,” Appl. Opt. 41(10), 1864–1871 (2002).
[Crossref] [PubMed]

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
[Crossref]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Glebova, L. N.

Haus, J. W.

He, D.

He, H.

He, Q.

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref] [PubMed]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Huang, Z.

Ingersoll, G. B.

Jin, G.

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

Jin, Y.

Kim, J.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kong, F.

Lee, M. G.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Leger, J. R.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Oh, C.

Papernov, S.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
[Crossref]

Rao, J.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Richardson, K. C.

Riza, N. A.

Rotar, V.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Schmid, A. W.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
[Crossref]

Serati, S.

J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50(17), 2636–2639 (2011).
[Crossref] [PubMed]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Smirnov, V. I.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
[Crossref] [PubMed]

Smith, N. R.

Sugama, A.

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Tan, Q.

Urey, H.

Wang, X.

Watson, E. A.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

Wu, L.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Xiong, C.

Xu, J.

Yaqoob, Z.

Yuan, X.

Zhang, X.

Zhang, Y.

Zhao, J.

Zhao, Y.

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

Zhuo, R.

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Chin. Opt. Lett. (2)

IEEE Photonics Technol. Lett. (1)

A. L. Glebov, V. I. Smirnov, M. G. Lee, L. B. Glebov, A. Sugama, S. Aoki, and V. Rotar, “Angle Selective Enhancement of Beam Deflection in High-Speed Electrooptic Switches,” IEEE Photonics Technol. Lett. 19(9), 701–703 (2007).
[Crossref]

Opt. Eng. (1)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Opt. Express (3)

Proc. IEEE (2)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[Crossref]

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. A. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proc. IEEE 97(6), 1078–1096 (2009).
[Crossref]

Proc. SPIE (2)

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermorefractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999).
[Crossref]

L. Cao, Y. Zhao, Q. He, and G. Jin, “Angle amplifier based on multiplexed volume holographic gratings,” Proc. SPIE 6832, 683216 (2007).
[Crossref]

Other (1)

I. W. Smith and M. K. O. Holz, “Wide-angle beam steering system,” U.S. Patent No. 7,215,472 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of beam deflection combined with LCOPA and multiplexed VBGs.
Fig. 2
Fig. 2 (a) Typical diffraction schematic of single channel VBG. (b) momentum or K-space diagram for reconstruction of single channel VBG.
Fig. 3
Fig. 3 Dependence of maximum diffraction efficiency (a) and FWHM (b) on grating thickness for each channel grating inside a multiplexed VBG. The RIM of each channel is simultaneously changed with the thickness in order to achieve the maximum diffraction efficiency of each channel grating as a single VBG.
Fig. 4
Fig. 4 (a) Dependence of −1T diffraction efficiency on incident angle for each channel grating of multiplexed VBG when the plane wave is incident. (b) Dependence of maximum diffraction efficiency on the beam divergence when the divergent beam is incident.
Fig. 5
Fig. 5 Schematic of three 4-channel multiplexed VBGs cascaded.
Fig. 6
Fig. 6 Theoretical angle selectivity curves for different channels in multiplexed VBG G1 (a), G2 (b), and G3 (c).
Fig. 7
Fig. 7 Scheme of DE measurement of multiplexed VBGs.
Fig. 8
Fig. 8 Scheme of dual-channel characteristics of single channel VBG.
Fig. 9
Fig. 9 Experimental angle selectivity curves for different channels in multiplexed VBG G1 (a), G2 (b), and G3 (c).
Fig. 10
Fig. 10 Normalized intensity curve of transmitted zero order beam for the cascade multiplexed VBGs.
Fig. 11
Fig. 11 Experimental angle selectivity curves of different channels for the cascaded multiplexed VBGs, (a) is the test result of TE polarization, and (b) is of TM polarization.

Tables (2)

Tables Icon

Table 1 Characteristic parameters of each grating channel

Tables Icon

Table 2 Experimental incident angle and exit angle of each channel VBG and deviation of them from expectant

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cos(φ θ i ) = K/2β
η i# = I i# I 0T + j=1 N I j# .

Metrics