Abstract

We demonstrate a novel technique to achieve a highly efficient terahertz (THz) modulation based on hybrid structures of organic layers (fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) fabricated on both sides of a silicon (Si) substrate. The organic layer generating an optically induced electron (or hole) transfer is deposited on the back (or front) side of the Si substrate. The spatial charge separation improved owing to the transferred photo-excited electrons or holes at both interfaces of PCBM/Si and TIPS-pentacene/Si, enables a highly efficient THz wave modulation. The photoexcitation on the hole-transfer organic layer (TIPS-pentacene/Si) further improves the modulation efficiency, as the diffusion of electrons through the Si substrate is faster than that of photo-excited holes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

Shafidah Shafian, Yoonhee Jang, and Kyungkon Kim
Opt. Express 23(15) A936-A946 (2015)

Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells

Yoon Ho Huh, In-Gon Bae, Hong Goo Jeon, and Byoungchoo Park
Opt. Express 24(22) A1321-A1335 (2016)

Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation

Longfang Ye, Kehan Sui, Yanhui Liu, Miao Zhang, and Qing Huo Liu
Opt. Express 26(12) 15935-15947 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York 2009).
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
    [Crossref]
  4. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  5. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
    [Crossref] [PubMed]
  6. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  7. J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
    [Crossref]
  8. I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
    [Crossref]
  9. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  10. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [Crossref] [PubMed]
  11. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  12. D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
    [Crossref] [PubMed]
  13. G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
    [Crossref]
  14. A. Kannegulla, M. I. Shams, L. Liu, and L. J. Cheng, “Photo-induced spatial modulation of THz waves: opportunities and limitations,” Opt. Express 23(25), 32098–32112 (2015).
    [Crossref] [PubMed]
  15. L. J. Cheng and L. Liu, “Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components,” Opt. Express 21(23), 28657–28667 (2013).
    [Crossref] [PubMed]
  16. H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
    [Crossref]
  17. H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
    [Crossref]
  18. T. Matsui, R. Takagi, K. Takano, and M. Hangyo, “Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials,” Opt. Lett. 38(22), 4632–4635 (2013).
    [Crossref] [PubMed]
  19. B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
    [Crossref] [PubMed]
  20. H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
    [Crossref]
  21. T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
    [Crossref]
  22. L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
    [Crossref]
  23. K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
    [Crossref] [PubMed]
  24. T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
    [Crossref]
  25. W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
    [Crossref] [PubMed]
  26. J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
    [Crossref]
  27. Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
    [Crossref] [PubMed]
  28. S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
    [Crossref] [PubMed]
  29. R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
    [Crossref] [PubMed]
  30. T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
    [Crossref]
  31. R. Hull, “Properties of crystalline silicon,” INSPEC, London, 1999.
  32. E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
    [Crossref]
  33. K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
    [Crossref]
  34. C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
    [Crossref]
  35. H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
    [Crossref]
  36. X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
    [Crossref] [PubMed]

2018 (2)

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

2017 (1)

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

2016 (7)

X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
[Crossref] [PubMed]

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

2015 (3)

A. Kannegulla, M. I. Shams, L. Liu, and L. J. Cheng, “Photo-induced spatial modulation of THz waves: opportunities and limitations,” Opt. Express 23(25), 32098–32112 (2015).
[Crossref] [PubMed]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

2014 (3)

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
[Crossref] [PubMed]

2013 (4)

L. J. Cheng and L. Liu, “Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components,” Opt. Express 21(23), 28657–28667 (2013).
[Crossref] [PubMed]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

T. Matsui, R. Takagi, K. Takano, and M. Hangyo, “Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials,” Opt. Lett. 38(22), 4632–4635 (2013).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (4)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

2011 (1)

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

2010 (1)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

2009 (1)

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

2008 (2)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

D. G. Cooke and P. U. Jepsen, “Optical modulation of terahertz pulses in a parallel plate waveguide,” Opt. Express 16(19), 15123–15129 (2008).
[Crossref] [PubMed]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
[Crossref]

2000 (1)

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

1998 (1)

J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
[Crossref]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Allah, A. F.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Baumgärtner, S.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Berson, S.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Chang, S.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, E.-C.

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, M.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

Chen, S.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Chen, T.

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Chen, T.-G.

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Chen, Z.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Cheng, L. J.

Cheng, Z.

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Choi, K. N.

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chung, K. S.

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

Cooke, D. G.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dawson, P.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Dyakonov, V.

E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
[Crossref]

Fan, F.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Feldmann, J.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Feng, S.

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hangyo, M.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

T. Matsui, R. Takagi, K. Takano, and M. Hangyo, “Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials,” Opt. Lett. 38(22), 4632–4635 (2013).
[Crossref] [PubMed]

He, T.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

He, X.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Hecker, N. E.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Hempel, M.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Heyman, J. N.

J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
[Crossref]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Hou, Y.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Hu, Y.

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Huang, B.-Y.

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Hwang, I. W.

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Inose, Y.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Jepsen, P. U.

Jin, Z.

Kang, C.

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Kang, R.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Kannegulla, A.

Kee, C. S.

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Kersting, R.

J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
[Crossref]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, D. Y.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H.-T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, K. S.

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Ko, D. K.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Koch, M.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kuromiya, S.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Lee, G. S.

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

Lee, H.

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

Lee, H. J.

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, H. S.

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

Lee, J. W.

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, K.

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Lee, K. S.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. G.

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S.-T.

R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
[Crossref] [PubMed]

Lemaitre, N.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Libon, I. H.

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

Lin, X.

Liu, L.

Liu, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Liu, R.

R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
[Crossref] [PubMed]

Liu, W.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

Liu, W.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Liu, X.

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Longeaud, C.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Lv, L.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

Ma, G.

Maeng, I. H.

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

Mao, Q.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Matsui, T.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

T. Matsui, R. Takagi, K. Takano, and M. Hangyo, “Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials,” Opt. Lett. 38(22), 4632–4635 (2013).
[Crossref] [PubMed]

Meng, H.-F.

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Miao, Y.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Min, B.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Mori, H.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nakajima, M.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

Oh, M. K.

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Parisi, R.

E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
[Crossref]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q.-H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Qin, L.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Sanderson, M.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Schmidt, J.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Shams, M. I.

Shen, J.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Sohn, I. B.

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Son, B.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Sun, B.

R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
[Crossref] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Takagi, R.

Takano, K.

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

T. Matsui, R. Takagi, K. Takano, and M. Hangyo, “Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials,” Opt. Lett. 38(22), 4632–4635 (2013).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Teng, F.

Tian, W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Unterrainer, K.

J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
[Crossref]

von Hauff, E.

E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
[Crossref]

Wang, X.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

Wen, Q.-Y.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Xu, S.

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

Yaakoubi, M. E.

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Yang, J. K.

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Yang, Q.-H.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Yoo, H. K.

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Yoon, Y. W.

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

Yu, N. E.

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Yu, P.

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

Zang, M.

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, B.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, “Conjugated polymer-based broadband terahertz wave modulator,” Opt. Lett. 39(21), 6110–6113 (2014).
[Crossref] [PubMed]

Zhang, H.-W.

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

Zhang, K.

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

X. Liu, Z. Zhang, X. Lin, K. Zhang, Z. Jin, Z. Cheng, and G. Ma, “Terahertz broadband modulation in a biased BiFeO3/Si heterojunction,” Opt. Express 24(23), 26618–26628 (2016).
[Crossref] [PubMed]

Zhang, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Zhang, Z.

Zhong, L.

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Liu, S.-T. Lee, and B. Sun, “13.8% Efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer,” Adv. Mater. 26(34), 6007–6012 (2014).
[Crossref] [PubMed]

AIP Adv. (1)

H. K. Yoo, H. Lee, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Conditions for optimal efficiency of PCBM-based terahertz modulators,” AIP Adv. 7(10), 105008 (2017).
[Crossref]

Appl. Phys. Lett. (9)

T.-G. Chen, B.-Y. Huang, E.-C. Chen, P. Yu, and H.-F. Meng, “Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101(3), 033301 (2012).
[Crossref]

H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, “Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers,” Appl. Phys. Lett. 105(1), 011115 (2014).
[Crossref]

T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, and Y. Hou, “High-efficiency THz modulator based on phthalocyanine-compound organic films,” Appl. Phys. Lett. 106(5), 053303 (2015).
[Crossref]

L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, and J. Shen, “Conjugated polymer based active electric-controlled terahertz device,” Appl. Phys. Lett. 108(10), 103301 (2016).
[Crossref]

J. N. Heyman, R. Kersting, and K. Unterrainer, “Time-domain measurement of intersubband oscillations in a quantum well,” Appl. Phys. Lett. 72(6), 644–646 (1998).
[Crossref]

I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76(20), 2821–2823 (2000).
[Crossref]

G. S. Lee, I. H. Maeng, C. Kang, M. K. Oh, and C. S. Kee, “High-efficiency optical terahertz modulation of aligned Ag nanowires on a Si substrate,” Appl. Phys. Lett. 112(11), 111101 (2018).
[Crossref]

H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, “Organic conjugated material-based broadband terahertz wave modulators,” Appl. Phys. Lett. 99(6), 061108 (2011).
[Crossref]

H. K. Yoo, S. G. Lee, C. Kang, C. S. Kee, and J. W. Lee, “Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures,” Appl. Phys. Lett. 103(15), 151116 (2013).
[Crossref]

IEEE Trans. Device Mater. Reliab. (1)

K. N. Choi, K. S. Kim, K. S. Chung, and H. S. Lee, “Solvent Effect on the Electrical Properties of Triisopropylsilylethynyl (TIPS) Pentacene Organic Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 9(3), 489–493 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Matsui, H. Mori, Y. Inose, S. Kuromiya, K. Takano, M. Nakajima, and M. Hangyo, “Efficient optical terahertz-transmission modulation in solution-processable organic semiconductor thin films on silicon substrate,” Jpn. J. Appl. Phys. 55(3S2), 03DC12 (2016).
[Crossref]

Nano Lett. (1)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nanoscale (1)

S. Chen, F. Fan, Y. Miao, X. He, K. Zhang, and S. Chang, “Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets,” Nanoscale 8(8), 4713–4719 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780–787 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photonics 10(6), 371–379 (2016).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, “Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics,” Opt. Eng. 51(11), 119002 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Org. Electron. (1)

C. Longeaud, A. F. Allah, J. Schmidt, M. E. Yaakoubi, S. Berson, and N. Lemaitre, “Determination of diffusion lengths in organic semiconductors: correlation with solar cell performances,” Org. Electron. 31, 253–257 (2016).
[Crossref]

Phys. Rev. Lett. (1)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2015).
[Crossref] [PubMed]

W. Liu, F. Fan, S. Xu, M. Chen, X. Wang, and S. Chang, “Terahertz wave modulation enhanced by laser processed PVA film on Si substrate,” Sci. Rep. 8(1), 8304 (2018).
[Crossref] [PubMed]

K. S. Lee, R. Kang, B. Son, D. Y. Kim, N. E. Yu, and D. K. Ko, “All-optical THz wave switching based on CH3NH3PbI3 perovskites,” Sci. Rep. 6(1), 37912 (2016).
[Crossref] [PubMed]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

E. von Hauff, V. Dyakonov, and R. Parisi, “Study of field effect mobility in PCBM films and P3HT: PCBM blends,” Sol. Energy Mater. Sol. Cells 87(1-4), 149–156 (2005).
[Crossref]

Other (2)

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York 2009).

R. Hull, “Properties of crystalline silicon,” INSPEC, London, 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) HOMO–LUMO energy level diagram of the TIPS-pentacene/Si/PCBM hybrid structure. The insets show the molecular structures of a TIPS-pentacene and PCBM molecules.
Fig. 2
Fig. 2 (a) Structures of the samples of bare Si, PCBM/Si, TIPS-pentacene/Si, and TIPS-pentacene/Si/PCBM, denoted as A, B, C, D, and E, respectively. The optical beams for photoexcitation are incident in the forward (D) and backward (E) directions of the three-layer structure of TIPS-pentacene/Si/PCBM. The arrows represent the direction of the optical beams. (b) Fourier-transformed spectral amplitudes for the samples measured under photoexcitation. The inset shows the spectral amplitudes measured without photoexcitation.
Fig. 3
Fig. 3 Contour plots of the spectral amplitudes transmitted through the (a) bilayer (TIPS-pentacene/Si) and (b) trilayer (TIPS-pentacene/Si/PCBM) structures, as a function of the THz frequency and excitation laser power. (c) Modulation efficiencies, as a function of the laser intensity, for the samples of bare Si (black squares), bilayer structures of TIPS-pentacene/Si (blue circles) and PCBM/Si (red triangles), and trilayer structures of PCBM/Si/TIPS-pentacene (green reverse triangles) and TIPS-pentacene/Si/PCBM (magenta diamonds).
Fig. 4
Fig. 4 Efficiency increment owing to the introduction of the organic layer, TIPS-pentacene (blue bars) or PCBM (red bars), on the back side of the Si substrate. The upper figure shows the increment rate, R, between the incidences on the TIPS-pentacene and PCBM layers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M eff = | E un ( ω ) | 2 dω | E ex ( ω ) | 2 dω | E un ( ω ) | 2 dω ×100