Abstract

Light absorption plays a key role in numerous photonic devices. In this work, we theoretically demonstrate that multiband circularly polarized light can be spin-selectively absorbed with a single-layered metasurface. The difference of absorption efficiency between left- and right-handed circularly polarized light can reach 40%. This giant chiroptical effect originates from different plasmonic resonances induced by the incident circularly polarized light with opposite spin states. Furthermore, by integrating the metasurface with nematic liquid crystals, the spin-selective absorption and the chirality can be dynamically reconfigured via applying a bias voltage. The advantageous features of being multiband-absorptive, backplane-free and reconfigurable make our proposed liquid-crystal-loaded chiral metasurfaces potentially useful for various photonic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials

Tun Cao, Yang Li, Chen-Wei Wei, and Yi-mei Qiu
Opt. Express 25(9) 9911-9925 (2017)

Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays

Meiyan Pan, Qiang Li, Yu Hong, Lu Cai, Jun Lu, and Min Qiu
Opt. Express 26(14) 17772-17780 (2018)

Active control of optical chirality with graphene-based achiral nanorings

Tong Fu, Yuyan Chen, Tiankun Wang, Hui Li, Zhongyue Zhang, and Li Wang
Opt. Express 25(20) 24623-24629 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
    [Crossref] [PubMed]
  2. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
    [Crossref]
  3. I. Tinoco and C. R. Cantor, Application of Optical Rotatory Dispersion and Circular Dichroism to the Study of Biopolymers (John Wiley & Sons, 2006).
  4. N. Berova, P. L. L. Polavarapu, K. Nakanishi, and R. W. W. Woody, Comprehensive Chiroptical Spectroscopy (John Wiley & Sons, 2012).
  5. J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
    [Crossref]
  6. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref] [PubMed]
  7. A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  8. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
    [Crossref] [PubMed]
  9. M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
    [Crossref] [PubMed]
  10. E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
    [Crossref] [PubMed]
  11. W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
    [Crossref]
  12. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  13. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  14. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  15. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  16. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  17. M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
    [Crossref]
  18. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref] [PubMed]
  19. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  20. L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  21. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref] [PubMed]
  22. B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
    [Crossref]
  23. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [PubMed]
  24. Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  25. I.-C. Khoo, Liquid Crystal, 2nd Edition (John Wiley & Sons, 2007).
  26. K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
    [Crossref]
  27. G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
    [Crossref] [PubMed]
  28. Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
    [Crossref]
  29. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
    [Crossref] [PubMed]
  30. Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
    [Crossref]
  31. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [Crossref]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  33. T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
    [Crossref] [PubMed]
  34. M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
    [Crossref]
  35. X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
    [Crossref]
  36. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  37. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref] [PubMed]

2018 (2)

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

2017 (5)

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

2016 (4)

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

2015 (2)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

2014 (3)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

2012 (3)

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

2011 (2)

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

2010 (6)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

2009 (2)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

2008 (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

2007 (1)

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Arju, N.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Aydin, K.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Belkin, M. A.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Butun, S.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Cai, Z. Y.

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chen, H.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, H. L.

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

Chen, K.

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Cheng, J. J.

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Cui, Y.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Cui, Y. X.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Ding, F.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dregely, D.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

El-Sayed, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Fan, Z.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Farshchi, R.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Giessen, H.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Govorov, A. O.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Grahn, H. T.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Grosse-Brauckmann, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Gu, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Hao, Q. Z.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

He, S. L.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, T. C.

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

He, Y. R.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Herfort, J.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Hill, E. H.

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

Hillenbrand, R.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Hor, Y. L.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

Huang, T. J.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Hyde, S. T.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Jin, Y.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Jing, L.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Jing, X. L.

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kerszulis, J.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Khoo, E. H.

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

Khoo, I. C.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Khosravi Khorashad, L.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

Kildishev, A. V.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kong, X. T.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

König, T. A. F.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kwon, D. H.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Lan, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Ledin, P. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Lee, J.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lee, K. T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Leong, E. S. P.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, S. G.

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Li, Z. Y.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lin, Y. Y.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liou, J.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Liu, Y.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Liu, Y. J.

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Liu, Z. H.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lu, F.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Ma, M.

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

Mahmoud, M. A.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Mecke, K.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nagao, T.

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

Neshev, D. N.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Palacios, E.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Panuski, P. W.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Phua, W. K.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Purtseladze, D.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Ramsteiner, M.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Reynolds, J. R.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Rukavina, M.

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

Saba, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Sarriugarte, P.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schaferling, M.

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Schnell, M.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Schröder-Turk, G. E.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Shvets, G.

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Si, G.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Smalley, J. S. T.

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Tahraoui, A.

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

Tang, B.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Thiel, M.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Tsukruk, V. V.

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Turner, M. D.

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Urbas, A. M.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Wang, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Wang, X.

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Wang, Z.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

Wu, S. J.

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Yang, L.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, Y.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ye, Y. Q.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhao, X. S.

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Zhao, Y.

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Zheng, B.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zheng, Y. B.

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

Zhong, S. M.

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

ACS Nano (1)

T. A. F. König, P. A. Ledin, J. Kerszulis, M. A. Mahmoud, M. A. El-Sayed, J. R. Reynolds, and V. V. Tsukruk, “Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer,” ACS Nano 8(6), 6182–6192 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (1)

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Y. J. Liu, Q. Z. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97(9), 091101 (2010).
[Crossref]

X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91(14), 143122 (2007).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, “Optical communication of spin information between light emitting diodes,” Appl. Phys. Lett. 98(16), 162508 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

J. Mater. Chem. (1)

Y. J. Liu, Z. Y. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

J. Phys. Chem. C (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[Crossref]

Laser Photonics Rev. (1)

Y. X. Cui, Y. R. He, Y. Jin, F. Ding, L. Yang, Y. Q. Ye, S. M. Zhong, Y. Y. Lin, and S. L. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Mater. Chem. Front. (1)

J. J. Cheng, E. H. Hill, Y. B. Zheng, T. C. He, and Y. J. Liu, “Optically active plasmonic resonance in self-assembled nanostructures,” Mater. Chem. Front. 2(4), 662–678 (2018).
[Crossref]

Materials (Basel) (1)

G. Si, Y. Zhao, E. S. P. Leong, and Y. J. Liu, “Liquid-crystal-enabled active plasmonics: A review,” Materials (Basel) 7(2), 1296–1317 (2014).
[Crossref] [PubMed]

Nano Lett. (3)

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Nanophotonics (1)

K. Chen, E. S. P. Leong, M. Rukavina, T. Nagao, Y. J. Liu, and Y. B. Zheng, “Active molecular plasmonics: Tuning surface plasmon resonances by exploiting molecular dimensions,” Nanophotonics 4(1), 186–197 (2015).
[Crossref]

Nat. Commun. (3)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

A. B. Khanikaev, N. Arju, Z. Fan, D. Purtseladze, F. Lu, J. Lee, P. Sarriugarte, M. Schnell, R. Hillenbrand, M. A. Belkin, and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8, 14602 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nature (1)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Ma, S. G. Li, X. L. Jing, and H. L. Chen, “Refractive indices of liquid crystal E7 depending on temperature and wavelengths,” Opt. Eng. 56(11), 117109 (2017).
[Crossref]

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. Lett. (5)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

M. Saba, M. Thiel, M. D. Turner, S. T. Hyde, M. Gu, K. Grosse-Brauckmann, D. N. Neshev, K. Mecke, and G. E. Schröder-Turk, “Circular dichroism in biological photonic crystals and cubic chiral nets,” Phys. Rev. Lett. 106(10), 103902 (2011).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schaferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Plasmonics (1)

W. K. Phua, Y. L. Hor, E. S. P. Leong, Y. J. Liu, and E. H. Khoo, “Study of circular dichroism modes through decomposition of planar nanostructures,” Plasmonics 11(2), 449–457 (2016).
[Crossref]

Sci. Rep. (1)

E. H. Khoo, E. S. P. Leong, S. J. Wu, W. K. Phua, Y. L. Hor, and Y. J. Liu, “Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments,” Sci. Rep. 6(1), 19658 (2016).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Other (4)

I. Tinoco and C. R. Cantor, Application of Optical Rotatory Dispersion and Circular Dichroism to the Study of Biopolymers (John Wiley & Sons, 2006).

N. Berova, P. L. L. Polavarapu, K. Nakanishi, and R. W. W. Woody, Comprehensive Chiroptical Spectroscopy (John Wiley & Sons, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

I.-C. Khoo, Liquid Crystal, 2nd Edition (John Wiley & Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the LC-loaded metasurface. Incident light propagates along –z-axis through the superstrate and LC layer. The inset shows the respective alignment of LC molecules at “OFF” and “ON” states. (b) The tilted angle θ between z-axis and the director of the LC molecule. The dash line represents the director of LC molecules. (c) The unit cell of the metasurface with the detailed structural parameters.
Fig. 2
Fig. 2 Simulated far-field spectra of the LC-loaded metasurface with a bias voltage that makes the LC molecules homeotropically aligned. (a) Transmittance, (b) reflectance, (c) absorption and (d) CD spectrum for RCP and LCP at normal incidence. In (a)-(c), the red and blue lines represent for the LCP and RCP light, respectively.
Fig. 3
Fig. 3 Enhanced optical chirality at the vicinity of the metasurface for the three absorption peaks. The left and right panels show the superchiral fields for LCP and RCP light at the three absorption peaks, respectively.
Fig. 4
Fig. 4 The induced charge distributions at the three absorption peaks with the left and right panels for the LCP and RCP light, respectively. For better comparation, the intensity is normalized by the maximum value of the LCP light induced charge at each absorption peak.
Fig. 5
Fig. 5 The light absorption bands changing with the tilted angle of the LC director under the incident (a) LCP and (b) RCP light. (c) The corresponding CD spectrum with the changing tilted angle. (d) The absorption spectra at “ON” and “OFF” states. The red and blue lines represent for the LCP and RCP light, respectively. The dash and solid lines represent for the “ON” and “OFF” states, respectively. (e)-(f) The polarization ellipses of the resonant wavelengths λ = 675 nm (e), λ = 747 nm (f) and λ = 838 nm (g) for RCP incident light at “ON” (red line) and “OFF” state (blue line). For λ = 675 nm the major angle is flipped from −0.94° (“ON” state) to −17.55° (“OFF” state). For λ = 747 nm the major angle is flipped from 40.52° (“ON” state) to −68.91° (“OFF” state) and for λ = 838 nm the major angle is flipped from −67.79° (“ON” state) to 60.45°. The polarization states for all the resonant wavelengths change from elliptically clockwise to elliptically counterclockwise when the bias voltage turns from the “ON” state to the “OFF” state.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε LC =[ ε o +Δε sin 2 θ 0 Δεcosθsinθ 0 ε o 0 Δεcosθsinθ 0 ε o +Δε cos 2 θ ],
E RCP = ( E x , E y ) T = 1 2 (1,exp( π 2 i)) T E LCP = ( E x , E y ) T = 1 2 (1,exp( π 2 i)) T .
( a + a )=( a ++ a + a + a )( i + i ) = 1 2 ( a xx + a yy +i( a xy a yx ) a xx a yy i( a xy + a yx ) a xx a yy +i( a xy + a yx ) a xx + a yy i( a xy a yx ) )( i + i ),
ε LC =[ ε o 0 0 0 ε o 0 0 0 ε e ].
C= ε 0 ω 2 Im( E * B ),

Metrics