Abstract

Multipoint acoustic sensing system plays an important role in industrial applications. Here, a diaphragm based optical fiber sensor array is proposed, in which each sensor tip is made of 10-layer graphene diaphragm and optical fiber pigtail, with the compact size of about 2.5 mm in diameter. In particular, coherent phase detection is adopted to improve detection signal-to-noise ratio (SNR) and eliminate the demodulation dependence on structural parameters of sensor tips, and thus to achieve the multiplexing ability. Through time division multiplex (TDM), a multiplexing capacity up to 248 in theory can be realized, which is the first time to theoretically demonstrate large-scale acoustic sensor array for diaphragm based fiber sensor by phase detection, to the best of our knowledge. A prototype of 2 *2 sensor array is built to demonstrate the acoustic sensing performance. The field test results show excellent acoustic sensitivity of higher than −136 dB re 1 rad/μPa within the frequency range of 300 Hz~15 kHz, as well as the MDP of only 75 μPa/Hz1/2. Besides, good temperature stability and wide directivity are demonstrated. The proposed sensor array is promising in sound source localization, where the positioning accuracy of 3.55 cm is successfully realized.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing

Wenjun Ni, Ping Lu, Xin Fu, Wei Zhang, Perry Ping Shum, Handong Sun, Chunyong Yang, Deming Liu, and Jiangshan Zhang
Opt. Express 26(16) 20758-20767 (2018)

Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias

Jun Ma, Yongqin Yu, and Wei Jin
Opt. Express 23(22) 29268-29278 (2015)

All-fiber-optic acoustic sensor array for real-time sound source localization

Jian Wang, Hongyan Wu, and Bo Jia
Appl. Opt. 56(12) 3347-3353 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).
  2. Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).
  3. Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
    [Crossref]
  4. A. Hekmati and R. Hekmati, “Optimum acoustic sensor placement for partial discharge allocation in transformers,” IET Sci. Measur. Technol. 11(5), 581–589 (2017).
    [Crossref]
  5. B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
    [Crossref]
  6. Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
    [Crossref]
  7. O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
    [Crossref] [PubMed]
  8. G. Zhang, C. Xi, Y. Liang, and H. Zuo, “Dual-Sagnac optical fiber sensor used in acoustic emission source location,” IEEE in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). 2, 1598–1602 (2011).
    [Crossref]
  9. C. Macià-Sanahuja, H. Lamela, and J. A. García-Souto, “Fiber optic interferometric sensor for acoustic detection of partial discharges,” J. Opt. Technol. 74(2), 122–126 (2007).
    [Crossref]
  10. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt. 50(22), 4333–4338 (2011).
    [Crossref] [PubMed]
  11. S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett. 34(12), 1858–1860 (2009).
    [Crossref] [PubMed]
  12. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
    [Crossref]
  13. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
    [Crossref]
  14. Y. Jiang, “Wavelength division multiplexing addressed four-element fiber optical laser hydrophone array,” Appl. Opt. 46(15), 2939–2948 (2007).
    [Crossref] [PubMed]
  15. B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
    [Crossref]
  16. V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
    [Crossref]
  17. T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
    [Crossref]
  18. R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
    [Crossref]
  19. L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).
  20. B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
    [Crossref]
  21. X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
    [Crossref]
  22. J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  23. L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
    [Crossref]
  24. J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
    [Crossref] [PubMed]
  25. B. Dong, M. Han, and A. Wang, “Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors,” Proc. SPIE, Fiber Optic Sensors and Applications IX, 8370: 83700K (2012).
    [Crossref]
  26. D. Tosi, “Simultaneous Detection of Multiple Fiber-Optic Fabry–Perot Interferometry Sensors with Cepstrum-Division Multiplexing,” J. Lightwave Technol. 34(15), 3622–3627 (2016).
    [Crossref]
  27. B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
    [Crossref]
  28. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
    [Crossref] [PubMed]
  29. D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
    [Crossref]
  30. M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
    [Crossref]
  31. J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
    [Crossref]
  32. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3(1), 26–29 (2016).
    [Crossref]

2017 (8)

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

A. Hekmati and R. Hekmati, “Optimum acoustic sensor placement for partial discharge allocation in transformers,” IET Sci. Measur. Technol. 11(5), 581–589 (2017).
[Crossref]

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

2016 (5)

N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3(1), 26–29 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

D. Tosi, “Simultaneous Detection of Multiple Fiber-Optic Fabry–Perot Interferometry Sensors with Cepstrum-Division Multiplexing,” J. Lightwave Technol. 34(15), 3622–3627 (2016).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

2015 (4)

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref] [PubMed]

D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
[Crossref]

2014 (2)

F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
[Crossref] [PubMed]

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

2013 (1)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

2012 (1)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

2011 (1)

2010 (1)

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

2009 (1)

2008 (1)

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

2007 (3)

2004 (1)

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

2002 (1)

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Aksarin, S. M.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Allen, T. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Arridge, S.

Badcock, R. A.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

Beard, P.

Beard, P. C.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Betcke, M.

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
[Crossref]

Biswas, P.

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

Butler, T.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

Chan, C. C.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Chen, L. H.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Chen, R.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

Colchester, R. J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Cox, B.

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
[Crossref]

Demirci, U.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Desjardins, A. E.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Efimov, M. E.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Ergun, A. S.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Fan, S.

D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Feng, X.

Fernando, G. F.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

Fu, T.

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

Fu, X.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Gang, T.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

García-Souto, J. A.

Goh, S. K.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Gong, K.

Guggenheim, J. A.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Guo, H.

Guo, T.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Hao, Y.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Hekmati, A.

A. Hekmati and R. Hekmati, “Optimum acoustic sensor placement for partial discharge allocation in transformers,” IET Sci. Measur. Technol. 11(5), 581–589 (2017).
[Crossref]

Hekmati, R.

A. Hekmati and R. Hekmati, “Optimum acoustic sensor placement for partial discharge allocation in transformers,” IET Sci. Measur. Technol. 11(5), 581–589 (2017).
[Crossref]

Ho, H. L.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hong, X.

Hui, R.

Huynh, N.

Jang, B. W.

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

Jiang, Y.

Jin, A.

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Jin, P.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Jin, W.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
[Crossref]

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref] [PubMed]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Johnson, J. A.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Karaman, M.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Kaviani, K.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Khuri-Yakub, B. T.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Kim, C. G.

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

Kim, K.

Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).

Kim, Y.

Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).

Kireenkov, A. U.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Koley, C.

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

Kulikov, A. V.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Lamela, H.

Lau, K. T.

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

Lavrov, V. S.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Lee, T. H.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Lee, Y. G.

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

Leng, J.

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

Li, C.

Li, H.

Li, J.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Li, L.

Li, X.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Liang, S.

Lin, B.

Lin, J.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Lin, W.

Liu, B.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Liu, D.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

Liu, F.

Liu, H.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

Liu, L.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Liu, Y.

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

Lu, P.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Ma, J.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref] [PubMed]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Ma, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Ma, Y.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Macià-Sanahuja, C.

Mao, X.

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Mishra, D. K.

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

Noh, Y.

Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).

Noimark, S.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Ogunlade, O.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Oralkan, O.

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

Papakonstantinou, I.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Park, C. Y.

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

Parkin, I. P.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Plotnikov, M. Y.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Qiao, X.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Rong, Q.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Roy, N. K.

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

Sarkar, B.

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

Shao, Z.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Shi, J.

Shulepov, V. A.

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
[Crossref]

Sun, J.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Sun, Q.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

Sun, Y.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Tan, Y.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
[Crossref]

Tian, X.

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Tosi, D.

Wang, D.

D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
[Crossref]

Wang, J.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

Wang, R.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Wang, S.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Wang, Z.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Wu, J.

Xu, F.

Xu, H.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Xu, K.

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yan, L.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Yang, F.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

Yang, Y.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yao, Q.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Yin, X.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Yu, B.

Yu, Q.

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Yu, Y.

Yuan, W.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Zhang, C.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

S. Liang, C. Zhang, W. Lin, L. Li, C. Li, X. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett. 34(12), 1858–1860 (2009).
[Crossref] [PubMed]

Zhang, E.

Zhang, E. Z.

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Zhang, J.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

Zhang, M.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

Zhang, W.

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

Zhou, R.

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Zhou, X.

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Zuo, C.

Adv. Compos. Mater. (1)

B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Impact source localization for composite structures under external dynamic loading condition,” Adv. Compos. Mater. 24(4), 359–374 (2015).
[Crossref]

Appl. Opt. (2)

Compos., Part B Eng. (1)

T. Fu, Y. Liu, K. T. Lau, and J. Leng, “Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors,” Compos., Part B Eng. 66, 420–429 (2014).
[Crossref]

IEEE Commun. Lett. (1)

Y. Kim, Y. Noh, and K. Kim, “RAR: Real-Time Acoustic Ranging in Underwater Sensor Networks,” IEEE Commun. Lett. 21(11), 2328–2331 (2017).

IEEE J. Sel. Top. Quant (1)

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant 23(2), 199–209 (2017).
[Crossref]

IEEE Photonics J. (3)

Q. Rong, R. Zhou, Y. Hao, X. Yin, Z. Shao, T. Gang, and X. Qiao, “Ultrasonic Sensitivity-Improved Fabry–Perot Interferometer Using Acoustic Focusing and Its Application for Noncontact Imaging,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

W. Zhang, R. Wang, Q. Rong, X. Qiao, T. Guo, Z. Shao, J. Li, and W. Ma, “An optical fiber Fabry-Pérot interferometric sensor based on functionalized diaphragm for ultrasound detection and imaging,” IEEE Photonics J. 9(3), 1–8 (2017).

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

IEEE Sens. J. (1)

B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber bragg grating sensor for detection of partial discharges inside high-voltage apparatus,” IEEE Sens. J. 16(22), 7950–7957 (2016).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, T. H. Lee, and B. T. Khuri-Yakub, “Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(11), 1596–1610 (2002).
[Crossref] [PubMed]

IET Sci. Measur. Technol. (1)

A. Hekmati and R. Hekmati, “Optimum acoustic sensor placement for partial discharge allocation in transformers,” IET Sci. Measur. Technol. 11(5), 581–589 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Technol. (1)

Meas. Sci. Technol. (1)

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[Crossref]

Microelectron. Eng. (1)

B. Liu, J. Lin, H. Liu, A. Jin, and P. Jin, “Extrinsic Fabry-Perot fiber acoustic pressure sensor based on large-area silver diaphragm,” Microelectron. Eng. 166, 50–54 (2016).
[Crossref]

Microsyst. Technol. (1)

D. Wang, S. Fan, and W. Jin, “Graphene diaphragm analysis for pressure or acoustic sensor applications,” Microsyst. Technol. 21(1), 117–122 (2015).
[Crossref]

Nat. Photonics (1)

J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang, and P. C. Beard, “Ultrasensitive plano-concave optical microresonators for ultrasound sensing,” Nat. Photonics 11(11), 714–719 (2017).
[Crossref]

Opt. Commun. (3)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13–14), 3082–3087 (2012).
[Crossref]

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281(6), 1538–1544 (2008).
[Crossref]

Opt. Eng. (1)

X. Mao, X. Tian, X. Zhou, and Q. Yu, “Characteristics of a fiber-optical Fabry–Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism,” Opt. Eng. 54(4), 046107 (2015).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

V. S. Lavrov, M. Y. Plotnikov, S. M. Aksarin, M. E. Efimov, V. A. Shulepov, A. V. Kulikov, and A. U. Kireenkov, “Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings,” Opt. Fiber Technol. 34, 47–51 (2017).
[Crossref]

Opt. Lett. (2)

Optica (1)

Sensor Actuat. A-Phys. (1)

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, “High performance chitosan diaphragm-based fiber-optic acoustic sensor,” Sensor Actuat. A-Phys. 163(1), 42–47 (2010).

Struct. Health Monit. (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Structural damage location with fiber Bragg grating rosettes and Lamb waves,” Struct. Health Monit. 6(4), 299–308 (2007).
[Crossref]

Other (2)

G. Zhang, C. Xi, Y. Liang, and H. Zuo, “Dual-Sagnac optical fiber sensor used in acoustic emission source location,” IEEE in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). 2, 1598–1602 (2011).
[Crossref]

B. Dong, M. Han, and A. Wang, “Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors,” Proc. SPIE, Fiber Optic Sensors and Applications IX, 8370: 83700K (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the sensor tip; (b) photograph of the sensor tip; (c) schematic of the applied tension on graphene diaphragm; (d) 2 *2 sensors array
Fig. 2
Fig. 2 Schematic of multi-point acoustic sensing system using coherent detection.
Fig. 3
Fig. 3 (a) Beat frequency signals; (b) Phase-extraction process.
Fig. 4
Fig. 4 Waveforms of (a) 60 Hz; (b) 400 Hz; (c) 2 kHz; (d) 20 kHz.
Fig. 5
Fig. 5 (a) Frequency response from 300 Hz to 15 kHz; (b) Power spectrum of the measured signals when an acoustic pressure level of 25.7 mPa at 3 kHz is applied.
Fig. 6
Fig. 6 Temperature stability from 0°C to 60°C.
Fig. 7
Fig. 7 (a) Schematic of directivity experiment; (b) Normalized sensitivity with different acoustic incident angle at 1 kHz and 2 kHz.
Fig. 8
Fig. 8 (a) Fittings curves of 2 *2 sensor array at 3.4 kHz; (b) Output signals from four sensor tips with different sound waves applied (Sensor1: 1 kHz; Sensor2: 2 kHz; Sensor3&4: no signal).
Fig. 9
Fig. 9 (a) Schematic diagram of sound source localization; (b) Result of sound source localization with hyperbolic positioning technique; (c) Waveforms detected by sensor array in time-domain.
Fig. 10
Fig. 10 Positioning error assessment of sound source localization.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h= 1 8 × a 2 Γ p.
S= Δφ p = 4πnh λp = nπ a 2 2Γ .
Δl cτ 2n .
E= n=0 N E n e i(2πΔft+ φ n )
E L = E L e i φ L .
I= I 0 +2 E L n=0 N E n cos(2πΔft+ φ n φ L ) .
Δ φ n = φ n φ 0 =( φ n φ L )( φ 0 φ L ).
P S =P 0 × 1 N 2 × ( 1R ) 2 ×r× 10 2αL/10
P N = P 0 ×( ΔL× α R × S n )× 10 2αL/10 .
P S 10 P N
N r( 1R ) 5ΔL α R S n .
P m = P 0 × 1 N 4 × r 2 ×R× ( 1R ) 2 ×M× 10 2L/10 .
Δ x 31 =( t 3 t 1 )× ν s =12.92(cm)
Δ x 32 =( t 3 t 2 )× ν s =29.92(cm)

Metrics