Abstract

We show theoretically and experimentally that distributed Bragg reflector (DBR) supports a surface electromagnetic wave exhibiting evanescent decay in the air and oscillatory decay in the DBR. The wave exists in TM polarization only. The field extension in the air may reach several wavelengths of light. Once gain medium is introduced into the DBR a novel class of diode lasers, semiconductor optical amplifiers, light-emitting diodes, etc. can be developed allowing a new type of in-plane or near-field light outcoupling. To improve the wavelength stability of the laser diode, a resonant cavity structure can be coupled to the DBR, allowing a coupled state of the cavity mode and the near-field mode. A GaAlAs-based epitaxial structure of a vertical-cavity surface-emitting laser (VCSEL) having an antiwaveguiding cavity and multiple GaInAs quantum wells as an active region was grown and processed as an in–plane Fabry-Pérot resonator with cleaved facets. Windows in the top stripe contact were made to facilitate monitoring of the optical modes. Three types of the optical modes were observed in electroluminescence (EL) studies under high current densities > 1 kA/cm2. Mode A with the longest wavelength is a VCSEL–like mode emitting normal to the surface. Mode B has a shorter wavelength, emitting light at two symmetric lobes tilted with respect to the normal to the surface in the direction parallel to the stripe. Mode C has the shortest wavelength and shifts with a temperature at a rate 0.06 nm/K. Polarization studies reveal predominantly TE emission for modes A and B and purely TM for mode C in agreement with the theory. Spectral position, thermal shift and polarization of mode C confirm it to be a coupled state of the cavity mode and near-field DBR surface-trapped mode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally narrow mid-infrared optically pumped lasers with partial surface DBR

Chi Yang, Ron Kaspi, Michael L. Tilton, Joseph R. Chavez, Andrew P. Ongstad, and Gregory C. Dente
Opt. Express 20(10) 10833-10838 (2012)

Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate

James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain
Opt. Express 23(3) 2512-2523 (2015)

Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector

Seung-Min Lee, Su-Hyun Gong, Jin-Ho Kang, Mohamed Ebaid, Sang-Wan Ryu, and Yong-Hoon Cho
Opt. Express 23(9) 11023-11030 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Landau and E. M. Lifshits, “Electrodynamics of continuous media,” Pergamon Press, Bristol, 1963, §68.
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41(2), 173–194 (1994).
    [Crossref]
  4. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
    [Crossref]
  5. S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
    [Crossref]
  6. N. Engheta and P. Pelet, “Surface waves in chiral layers,” Opt. Lett. 16(10), 723–725 (1991).
    [Crossref] [PubMed]
  7. H. Y. Yang, J. A. Castaneda, and N. G. Alexopoulos, “Surface waves in gyrotropic substrates,” AP–S International Symposium (Digest) (IEEE Antennas and Propagation Society), IEEE, 1651–1654 (1991).
  8. W. J. Tomlinson, “Surface wave at a nonlinear interface,” Opt. Lett. 5(7), 323–325 (1980).
    [Crossref] [PubMed]
  9. M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).
  10. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, “Diode lasers and photonic integrated circuits,” Wiley (2012).
  11. N. N. Ledentsov and V. A. Shchukin, “Novel concepts for injection lasers,” Opt. Eng. 41(12), 3193–3203 (2002).
    [Crossref]
  12. C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
    [Crossref] [PubMed]
  13. T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
    [Crossref]
  14. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: A tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  15. A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
    [Crossref]
  16. Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
    [Crossref] [PubMed]
  17. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [Crossref]
  18. I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
    [Crossref]
  19. V. A. Shchukin, N. N. Ledentsov, J.-R. Kropp, G. Steinle, N. Ledentsov, Jr., K. D. Choquette, S. Burger, and F. Schmidt, “Engineering of optical modes in vertical–cavity microresonators by aperture placement: applications to single–mode and near–field lasers,” Proc. SPIE 9381, Vertical–Cavity Surface–Emitting Lasers XIX, C. Lei and K. D. Choquette, eds., 93810V (March 20, 2015).
  20. V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, A. R. Kovsh, L. Ya. Karachinsky, M. V. Maximov, I. I. Novikov, and Yu. M. Shernyakov, “Tilted cavity laser (Critical review lecture),” Proc. SPIE Int. Soc. Opt. Eng. 5509, 61–71 (2004).
    [Crossref]
  21. N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).
  22. N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kalyuzhnyi, S. A. Mintairov, A. S. Payusov, Yu. M. Shernyakov, K. A. Vashanova, M. M. Kulagina, and N. Y. Shmidt, “Passive cavity laser and tilted wave laser for Bessel–like beam coherently–coupled bars and stacks,” Proc. SPIE 9357, Physics and Simulation of Optoelectronic Devices XXIII, B. Witzigmann, M. Osiński, F. Henneberger and Y. Arakawa, eds., 93570X, (March 16, 2015).
  23. M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
    [Crossref]
  24. J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
    [Crossref]
  25. V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
    [Crossref]
  26. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  27. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
    [Crossref]
  28. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  29. M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
    [Crossref] [PubMed]
  30. C. López-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35(8), 1215–1217 (2010).
    [Crossref] [PubMed]
  31. N. N. Ledentsov, V. A. Shchukin, and J. A. Lott, “Ultrafast nanophotonic devices for optical interconnects” Proc. 2012 Advanced Research Workshop (FTM–7), June 25–29, 2012: Corsica, France, in “Future Trends in Microelectronics: Into the Cross Currents,” S. Luryi, J. Xu and A. Zaslavsky, eds., Wiley (2013).
  32. V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
    [Crossref]
  33. N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
    [Crossref]
  34. N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
    [Crossref]
  35. D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
    [Crossref]
  36. V. A. Shchukin, N. N. Ledentsov, V. P. Kalosha, N. Ledentsov, Jr., M. Agustin, J. R. Kropp, M. V. Maximov, F. I. Zubov, Yu. M. Shernyakov, A. S. Payusov, N. Yu. Gordeev, M. M. Kulagina, and A. E. Zhukov, “Thremally stable surface–emitting tilted wave laser,” Proc. SPIE 10552, Vertical–Cavity Surface–Emitting Lasers XXII, C. Lei and K. D. Choquette, eds., 1055207 (2018).
  37. N. Ledentsov and V. Shchukin, “Optoelectronic device based on an antiwaveguiding cavity,” United States Patent 7,339,965, issued March 4, 2008, priority date April 7, 2004.
  38. N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission,” Opt. Express 26(1), 445–453 (2018).
    [Crossref] [PubMed]
  39. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), section 6.3.
  40. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
    [Crossref]
  41. V. A. Shchukin, N. N. Ledentsov, and A. Yu. Egorov, “Surface electromagnetic waves at the boundary of a distributed Bragg reflector,” Sci. Rep. (to be published).
  42. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13(20), 7899–7904 (2005).
    [Crossref] [PubMed]
  43. D. A. B. Miller, “Optical physics of quantum wells,” (1996), https://www.researchgate.net/publication/260403078_Optical_Physics_of_Quantum_Wells

2018 (2)

2017 (3)

N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
[Crossref]

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
[Crossref]

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

2016 (2)

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

2015 (2)

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

2014 (1)

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

2013 (1)

C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
[Crossref] [PubMed]

2012 (2)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, and A. Forbes, “Entangled Bessel-Gaussian beams,” Opt. Express 20(21), 23589–23597 (2012).
[Crossref] [PubMed]

2011 (3)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

2010 (3)

C. López-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35(8), 1215–1217 (2010).
[Crossref] [PubMed]

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

2006 (1)

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

2005 (3)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, “Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier,” Opt. Express 13(20), 7899–7904 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

N. N. Ledentsov and V. A. Shchukin, “Novel concepts for injection lasers,” Opt. Eng. 41(12), 3193–3203 (2002).
[Crossref]

1994 (1)

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41(2), 173–194 (1994).
[Crossref]

1991 (1)

1988 (1)

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

1980 (1)

Agnew, M.

Agustin, M.

Akulova, Y.

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barton, J. S.

Bayat, M.

D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
[Crossref]

Bimberg, D.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Bowers, J. E.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Boyd, R. W.

Bugge, F.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Burger, S.

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Chao, R.-L.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Choquette, K. D.

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

Chorchos, L.

Chunareva, A. V.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Chung, I.-S.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Coldren, C. W.

Coldren, L. A.

Dai, W.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Davenport, M.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Deng, H.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Deppe, D. G.

D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dholakia, K.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Dyakonov, M. I.

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Egorov, A. Yu.

V. A. Shchukin, N. N. Ledentsov, and A. Yu. Egorov, “Surface electromagnetic waves at the boundary of a distributed Bragg reflector,” Sci. Rep. (to be published).

Engheta, N.

Fang, A.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Fish, G. A.

Forbes, A.

Gordeev, N. Yu.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Gunn-Moore, F.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Haglund, Å.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Helmerson, K.

Hemmer, P.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Hulme, J.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Johansson, L.

Kalosha, V.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Kalosha, V. P.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission,” Opt. Express 26(1), 445–453 (2018).
[Crossref] [PubMed]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Kaluzhniy, N. A.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

Karachinsky, L. Ya.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Kasten, A. M.

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

Kettler, Th.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Knauer, S.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
[Crossref]

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Komljenovic, T.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Koschny, T.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Kropp, J.

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

Kropp, J. R.

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

Kropp, J.-R.

Kuznetsov, S. M.

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Leach, J.

Ledentsov, N.

N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
[Crossref]

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Ledentsov, N. N.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission,” Opt. Express 26(1), 445–453 (2018).
[Crossref] [PubMed]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission,” Opt. Express 26(1), 445–453 (2018).
[Crossref] [PubMed]

N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
[Crossref]

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

N. N. Ledentsov and V. A. Shchukin, “Novel concepts for injection lasers,” Opt. Eng. 41(12), 3193–3203 (2002).
[Crossref]

V. A. Shchukin, N. N. Ledentsov, and A. Yu. Egorov, “Surface electromagnetic waves at the boundary of a distributed Bragg reflector,” Sci. Rep. (to be published).

Lee, C. W.

C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
[Crossref] [PubMed]

Li, M.

D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
[Crossref]

Liang, L.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

López-García, M.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
[Crossref]

López-Mariscal, C.

Lott, J. A.

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

Maximov, M. V.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Mazilu, M.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

McLaren, M.

Mintairov, S. A.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

Mørk, J.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Novikov, I. I.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Padgett, M. J.

Palinginis, P.

Payusov, A. S.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

Pelet, P.

Pesala, B.

Posilovic, K.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Rarity, J. G.

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
[Crossref]

Roux, F. S.

Schmidt, F.

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

Seidlitz, D.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Shchukin, V.

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Shchukin, V. A.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850 nm: From concept to advances in high-speed data transmission,” Opt. Express 26(1), 445–453 (2018).
[Crossref] [PubMed]

N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
[Crossref]

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

N. N. Ledentsov and V. A. Shchukin, “Novel concepts for injection lasers,” Opt. Eng. 41(12), 3193–3203 (2002).
[Crossref]

V. A. Shchukin, N. N. Ledentsov, and A. Yu. Egorov, “Surface electromagnetic waves at the boundary of a distributed Bragg reflector,” Sci. Rep. (to be published).

Shernyakov, Yu. M.

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

Shi, J.-W.

Singh, G.

C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Srinivasan, S.

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Steinle, G.

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

Stepniak, G.

Stevenson, D. J.

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

Taghizadeh, A.

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

Tomlinson, W. J.

Turkiewicz, J. P.

Tuttle, G.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Wang, B.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Wang, Q.

C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Weyers, M.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Winterfeldt, M.

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41(2), 173–194 (1994).
[Crossref]

Yang, X.

D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
[Crossref]

Zhang, B.

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Zhang, L.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Zhao, X.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Appl. Phys. Lett. (2)

A. Taghizadeh, J. Mørk, and I.-S. Chung, “Vertical–cavity in–plane heterostructures: physics and applications,” Appl. Phys. Lett. 107(18), 181107 (2015).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett. 97(15), 151113 (2010).
[Crossref]

Appl. Sci. (1)

T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, “Widely tunable ring–resonator semiconductor lasers (Review),” Appl. Sci. 7(7), 732 (2017).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Electron. Lett. (1)

J. A. Lott, V. A. Shchukin, N. N. Ledentsov, A. M. Kasten, and K. D. Choquette, “Passive cavity surface emitting laser,” Electron. Lett. 47(12), 717–718 (2011).
[Crossref]

IEEE J. Quantum Electron. (5)

V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, Th. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Yu. Gordeev, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, and M. Weyers, “Tilted wave lasers: A way to high brightness sources of light,” IEEE J. Quantum Electron. 47(7), 1014–1027 (2011).
[Crossref]

V. Shchukin, N. Ledentsov, J. Kropp, G. Steinle, N. Ledentsov, S. Burger, and F. Schmidt, “Single–mode vertical cavity surface emitting laser via oxide–aperture–engineering of leakage of high–order transverse modes,” IEEE J. Quantum Electron. 50(12), 990–995 (2014).
[Crossref]

N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, J. R. Kropp, S. Burger, and F. Schmidt, “Direct evidence of the leaky emission in oxide–confined vertical cavity lasers,” IEEE J. Quantum Electron. 52(3), 2400207 (2016).
[Crossref]

D. G. Deppe, M. Li, X. Yang, and M. Bayat, “Advanced VCSEL technology: self–heating and intrinsic modulation response,” IEEE J. Quantum Electron. 54(3), 2400209 (2018).
[Crossref]

M. V. Maximov, Yu. M. Shernyakov, I. I. Novikov, S. M. Kuznetsov, L. Ya. Karachinsky, N. Yu. Gordeev, V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, “High–performance 640–nm–range GaInP–AlGaInP lasers based on the longitudinal photonic bandgap crystal with narrow vertical beam divergence,” IEEE J. Quantum Electron. 41(11), 1341–1348 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high–speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

E. Yablonovitch, “Photonic crystals,” J. Mod. Opt. 41(2), 173–194 (1994).
[Crossref]

J. Opt. (1)

S. Knauer, M. López-García, and J. G. Rarity, “Structured polymer waveguides on distributed Bragg reflector coupling to solid state emitter,” J. Opt. 19(6), 065203 (2017).
[Crossref]

Laser Photonics Rev. (2)

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non–diffracting beams,” Laser Photonics Rev. 4(4), 529–547 (2010).
[Crossref]

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Nanophotonics (1)

N. N. Ledentsov, N. Ledentsov, M. Agustin, J.-R. Kropp, and V. A. Shchukin, “Application of nanophotonics to the next generation of surface–emitting lasers,” Nanophotonics 6(5), 813–829 (2017).
[Crossref]

Nanoscale (1)

C. W. Lee, G. Singh, and Q. Wang, “Light extraction--a practical consideration for a plasmonic nano-ring laser,” Nanoscale 5(22), 10835–10838 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Eng. (1)

N. N. Ledentsov and V. A. Shchukin, “Novel concepts for injection lasers,” Opt. Eng. 41(12), 3193–3203 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006).
[Crossref]

Phys. Rev. Lett. (1)

Z. Wang, B. Zhang, and H. Deng, “Dispersion engineering for vertical microcavities using subwavelength gratings,” Phys. Rev. Lett. 114(7), 073601 (2015).
[Crossref] [PubMed]

Proc. SPIE (1)

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kaluzhniy, S. A. Mintairov, A. S. Payusov, and Yu. M. Shernyakov, “Optical mode engineering and high power density per facet length (8.4 kW/cm) in tilted wave laser diodes,” Proc. SPIE 9733, 97330P (2016).

Sov. Phys. JETP (1)

M. I. Dyakonov, “New type of electromagnetic wave propagating at an interface,” Sov. Phys. JETP 67(4), 714–716 (1988).

Other (12)

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, “Diode lasers and photonic integrated circuits,” Wiley (2012).

H. Y. Yang, J. A. Castaneda, and N. G. Alexopoulos, “Surface waves in gyrotropic substrates,” AP–S International Symposium (Digest) (IEEE Antennas and Propagation Society), IEEE, 1651–1654 (1991).

L. D. Landau and E. M. Lifshits, “Electrodynamics of continuous media,” Pergamon Press, Bristol, 1963, §68.

V. A. Shchukin, N. N. Ledentsov, J.-R. Kropp, G. Steinle, N. Ledentsov, Jr., K. D. Choquette, S. Burger, and F. Schmidt, “Engineering of optical modes in vertical–cavity microresonators by aperture placement: applications to single–mode and near–field lasers,” Proc. SPIE 9381, Vertical–Cavity Surface–Emitting Lasers XIX, C. Lei and K. D. Choquette, eds., 93810V (March 20, 2015).

V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, A. R. Kovsh, L. Ya. Karachinsky, M. V. Maximov, I. I. Novikov, and Yu. M. Shernyakov, “Tilted cavity laser (Critical review lecture),” Proc. SPIE Int. Soc. Opt. Eng. 5509, 61–71 (2004).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, M. V. Maximov, N. Yu. Gordeev, N. A. Kalyuzhnyi, S. A. Mintairov, A. S. Payusov, Yu. M. Shernyakov, K. A. Vashanova, M. M. Kulagina, and N. Y. Shmidt, “Passive cavity laser and tilted wave laser for Bessel–like beam coherently–coupled bars and stacks,” Proc. SPIE 9357, Physics and Simulation of Optoelectronic Devices XXIII, B. Witzigmann, M. Osiński, F. Henneberger and Y. Arakawa, eds., 93570X, (March 16, 2015).

N. N. Ledentsov, V. A. Shchukin, and J. A. Lott, “Ultrafast nanophotonic devices for optical interconnects” Proc. 2012 Advanced Research Workshop (FTM–7), June 25–29, 2012: Corsica, France, in “Future Trends in Microelectronics: Into the Cross Currents,” S. Luryi, J. Xu and A. Zaslavsky, eds., Wiley (2013).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), section 6.3.

V. A. Shchukin, N. N. Ledentsov, V. P. Kalosha, N. Ledentsov, Jr., M. Agustin, J. R. Kropp, M. V. Maximov, F. I. Zubov, Yu. M. Shernyakov, A. S. Payusov, N. Yu. Gordeev, M. M. Kulagina, and A. E. Zhukov, “Thremally stable surface–emitting tilted wave laser,” Proc. SPIE 10552, Vertical–Cavity Surface–Emitting Lasers XXII, C. Lei and K. D. Choquette, eds., 1055207 (2018).

N. Ledentsov and V. Shchukin, “Optoelectronic device based on an antiwaveguiding cavity,” United States Patent 7,339,965, issued March 4, 2008, priority date April 7, 2004.

D. A. B. Miller, “Optical physics of quantum wells,” (1996), https://www.researchgate.net/publication/260403078_Optical_Physics_of_Quantum_Wells

V. A. Shchukin, N. N. Ledentsov, and A. Yu. Egorov, “Surface electromagnetic waves at the boundary of a distributed Bragg reflector,” Sci. Rep. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical power reflectance (OR) spectra of the model DBR. (a)–(c) Modeled spectra for light impinging from material #1 onto the DBR. (d), (e) Modeled spectra for light impinging from the air at ϑ = 89.9°.
Fig. 2
Fig. 2 (a, b) Modeled optical power reflectance spectra for light impinging from the air at different glancing angles of incidence. One can see that the within the interval of angles from 86° to 90° the spectral position of the dip, or the transparency wavelength is not a function of the glancing angle allowing angle–insensitive filters.
Fig. 3
Fig. 3 Refractive index profile of the model DBR and magnetic field strength profile in surface TM modes at different wavelengths.
Fig. 4
Fig. 4 Mode confinement coefficient of the surface TM mode which is inverse proportional to the mode extension length in the air, β = λ / ( 4 π l e x t ) , versus mode wavelength for different thickness of the topmost layer.
Fig. 5
Fig. 5 (a) Perspective view of a chip with a metal grid contact on top surface. The chip is a rectangular–shaped ~350 × 400 µm piece with perpendicular facets. The contact grid region has a total width of w~70 µm. d = 7 µm–wide metal stripes serving as non–alloyed metal contact forms periodic rectangular openings having a size of b × a = 10 × 40 µm. Numbers 1, 2, 3 indicate various positions of the photodetector measuring electroluminescence. (b) Infrared image of the lasing device. Gray structure in the center is the copper wire bonded on top of the grid.
Fig. 6
Fig. 6 Electroluminescence spectrum measured from the edge of the device in the stripe direction.
Fig. 7
Fig. 7 (a) Shift of three electroluminescence (EL) peaks versus temperature. (b) Evolution of the EL spectrum versus temperatures while passing the resonance between mode B and mode C.
Fig. 8
Fig. 8 (a) Far field profile of the electroluminescence (EL). (b) Spectrally–resolved far field profile of EL.
Fig. 9
Fig. 9 Polarization–resolved electroluminescence (EL) spectra of the device.
Fig. 10
Fig. 10 Effect of the facet scratching on the mode competition in electroluminescence (EL) spectra. (a) Device with cleaved facets emits light in all three modes. Increase in drive current leads to lasing in the tilted mode B. (b) In a device with the rear facet scratched, the tilted mode B is suppressed, and mode C coupled with the surface mode dominates the EL spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ( t , r ) = [ H x ( t , r ) , H y ( t , r ) , H z ( t , r ) ] = [ 0 , H y ( z ) exp ( i ω t ) exp ( i n e f f k 0 x ) , 0 ] ,
ε ( z ) d d z [ 1 ε ( z ) d d z H y ( z ) ] ε ( z ) k 0 2 H y ( z ) = n e f f 2 k 0 2 H y ( z ) .

Metrics