Abstract

We propose a novel class of “complete” arbitrary thermal cloaks through rotatory linear maps. Different from the conventionally circular and arbitrary shape cloaks, as well as the unconventionally non-continuous shape cloaks, the proposed cloaking performances are observed in non-uniformly structural devices. Four schemes are demonstrated with homogeneous media configurations, and expected cloaking behaviors are exhibited in the internal regions. Further investigations reveal that the proposed devices perform robustness on the thermal profiles. The findings may also open up a novel avenue to generally achieve novel behaviors in the fields of optics, electromagnetics, and so forth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Target illusion by shifting a distance

Chengfu Yang, Ming Huang, Jingjing Yang, Fuchun Mao, and Tinghua Li
Opt. Express 26(19) 24280-24293 (2018)

Tessellated and stellated invisibility

André Diatta, André Nicolet, Sébastien Guenneau, and F. Zolla
Opt. Express 17(16) 13389-13394 (2009)

Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

Chuwen Lan, Ke Bi, Xiaojian Fu, Bo Li, and Ji Zhou
Opt. Express 24(20) 23072-23080 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  3. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  4. T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
    [Crossref] [PubMed]
  5. Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
    [Crossref]
  6. F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
    [Crossref]
  7. H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
    [Crossref]
  8. H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
    [Crossref]
  9. H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
    [Crossref]
  10. C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
    [Crossref]
  11. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
    [Crossref] [PubMed]
  12. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
    [Crossref] [PubMed]
  13. X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Tran. 78, 1–6 (2014).
    [Crossref]
  14. T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
    [Crossref]
  15. G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
    [Crossref]
  16. T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
    [Crossref]
  17. T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
    [Crossref] [PubMed]
  18. T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
    [Crossref] [PubMed]
  19. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
    [Crossref] [PubMed]
  20. D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
    [Crossref]
  21. G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
    [Crossref] [PubMed]
  22. T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
    [Crossref]
  23. Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
    [Crossref]
  24. Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
    [Crossref] [PubMed]
  25. X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
    [Crossref]
  26. G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).
  27. Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
    [Crossref] [PubMed]
  28. R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
    [Crossref] [PubMed]
  29. J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
    [Crossref] [PubMed]
  30. T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
    [Crossref]
  31. C. Lan, M. Lei, K. Bi, B. Li, and J. Zhou, “Highly efficient manipulation of Laplace fields in film system with structured bilayer composite,” Opt. Express 24(26), 29537–29546 (2016).
    [Crossref] [PubMed]
  32. R. Duan, E. Semouchkina, and R. Pandey, “Geometric optics-based multiband cloaking of large objects with the wave phase and amplitude preservation,” Opt. Express 22(22), 27193–27202 (2014).
    [Crossref] [PubMed]
  33. R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties,” Opt. Express 25(20), 24486–24500 (2017).
    [Crossref] [PubMed]
  34. Y. B. Li, B. G. Cai, X. Wan, and T. J. Cui, “Diffraction-free surface waves by metasurfaces,” Opt. Lett. 39(20), 5888–5891 (2014).
    [Crossref] [PubMed]

2018 (5)

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

2017 (6)

J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
[Crossref] [PubMed]

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
[Crossref]

G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
[Crossref] [PubMed]

R. Dehbashi, K. S. Bialkowski, and A. M. Abbosh, “Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties,” Opt. Express 25(20), 24486–24500 (2017).
[Crossref] [PubMed]

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

2016 (5)

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
[Crossref] [PubMed]

C. Lan, M. Lei, K. Bi, B. Li, and J. Zhou, “Highly efficient manipulation of Laplace fields in film system with structured bilayer composite,” Opt. Express 24(26), 29537–29546 (2016).
[Crossref] [PubMed]

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

2015 (3)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
[Crossref]

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

2014 (7)

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Tran. 78, 1–6 (2014).
[Crossref]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Y. B. Li, B. G. Cai, X. Wan, and T. J. Cui, “Diffraction-free surface waves by metasurfaces,” Opt. Lett. 39(20), 5888–5891 (2014).
[Crossref] [PubMed]

R. Duan, E. Semouchkina, and R. Pandey, “Geometric optics-based multiband cloaking of large objects with the wave phase and amplitude preservation,” Opt. Express 22(22), 27193–27202 (2014).
[Crossref] [PubMed]

2013 (4)

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

2012 (1)

2008 (1)

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Abbosh, A. M.

Amra, C.

Bai, X.

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Bi, K.

Bi, Y.

J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
[Crossref] [PubMed]

Bialkowski, K. S.

Cai, B. G.

Cai, T.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Chen, F.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

Chen, T.

T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
[Crossref]

Chen, Z.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Cui, T. J.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Y. B. Li, B. G. Cai, X. Wan, and T. J. Cui, “Diffraction-free surface waves by metasurfaces,” Opt. Lett. 39(20), 5888–5891 (2014).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dehbashi, R.

Ding, Y.

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

Duan, R.

Fan, C. Z.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Gao, D.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Gao, F.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Gao, Y.

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Gao, Z.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Guenneau, S.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20(7), 8207–8218 (2012).
[Crossref] [PubMed]

Guo, W.

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
[Crossref]

Han, T.

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
[Crossref]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

He, Q.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

He, S.

Hong, M.

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

Hou, Q.

J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
[Crossref] [PubMed]

Hu, R.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Huang, J.

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

Huang, J. P.

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Tran. 78, 1–6 (2014).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

Huang, L.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

Jiang, C.

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

Jin, Y.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadic, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Kim, Y.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Lan, C.

Lei, D. Y.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Lei, M.

Li, B.

C. Lan, M. Lei, K. Bi, B. Li, and J. Zhou, “Highly efficient manipulation of Laplace fields in film system with structured bilayer composite,” Opt. Express 24(26), 29537–29546 (2016).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Li, S.

Li, Y.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
[Crossref] [PubMed]

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

Li, Y. B.

Ling, X.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Liu, D.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Liu, H.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Liu, Y.

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
[Crossref]

Y. Liu, F. Sun, and S. He, “Novel thermal lens for remote heating/cooling designed with transformation optics,” Opt. Express 24(6), 5683–5692 (2016).
[Crossref] [PubMed]

Luo, H.

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

Luo, X.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Luo, Y.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Ma, K.

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Ma, S.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Nguyen, D. M.

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Pandey, R.

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Qiu, C. W.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Schittny, R.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Semouchkina, E.

Shen, X.

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

Shen, X. Y.

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Tran. 78, 1–6 (2014).
[Crossref]

Shi, X.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Statharas, E. C.

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

Sun, F.

Sun, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Sun, S.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Sun, Y.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Tang, S.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Teng, J.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Thong, J. T. L.

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

Tsai, Y. L.

T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
[Crossref]

Veynante, D.

Wan, X.

Wang, G. M.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Wang, J.

J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
[Crossref] [PubMed]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wegener, M.

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

Weng, C. N.

T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
[Crossref]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, Q.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Xu, G.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).

G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
[Crossref] [PubMed]

Xu, G. Q.

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

Xu, H.

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Xu, H. X.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

Xu, W.

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

Yang, T.

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

Yao, K.

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

Ye, H.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Yeo, S. P.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Yuan, T.

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Zhang, B.

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Zhang, H.

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).

G. Xu, H. Zhang, Y. Jin, S. Li, and Y. Li, “Control and design heat flux bending in thermal devices with transformation optics,” Opt. Express 25(8), A419–A431 (2017).
[Crossref] [PubMed]

Zhang, H. C.

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

Zhang, L.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Zhang, S.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhang, X. K.

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Zhang, Y.

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

Zhao, J.

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Zhou, J.

Zhou, L.

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Zhou, S.

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Zou, Q.

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

ACS Photonics (1)

H. X. Xu, S. Ma, X. Ling, X. K. Zhang, S. Tang, T. Cai, S. Sun, Q. He, and L. Zhou, “Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces,” ACS Photonics 5(5), 1691–1702 (2018).
[Crossref]

Adv. Funct. Mater. (1)

F. Gao, Z. Gao, Y. Luo, and B. Zhang, “Invisibility dips of near-field energy transport in a spoof plasmonic meta-dimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Adv. Mater. (2)

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating dc currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref] [PubMed]

R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, “Illusion thermotics,” Adv. Mater. 30(22), 1707237 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

H. X. Xu, G. M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater. 2(6), 572–580 (2014).
[Crossref]

H. X. Xu, L. Zhang, Y. Kim, G. M. Wang, X. K. Zhang, Y. Sun, X. Ling, H. Liu, Z. Chen, and C. W. Qiu, “Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility,” Adv. Opt. Mater. 6(10), 1800010 (2018).
[Crossref]

Appl. Phys. Lett. (4)

Y. Ding, E. C. Statharas, K. Yao, and M. Hong, “A broadband acoustic metamaterial with impedance matching layer of gradient index,” Appl. Phys. Lett. 110(24), 241903 (2017).
[Crossref]

C. Z. Fan, Y. Gao, and J. P. Huang, “Shaped graded materials with an apparent negative thermal conductivity,” Appl. Phys. Lett. 92(25), 251907 (2008).
[Crossref]

X. Shen, C. Jiang, Y. Li, and J. Huang, “Thermal metamaterial for convergent transfer of conductive heat with high efficiency,” Appl. Phys. Lett. 109(20), 201906 (2016).
[Crossref]

D. M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, “Active thermal cloak,” Appl. Phys. Lett. 107(12), 121901 (2015).
[Crossref]

Energy Convers. Manage. (1)

G. Xu, H. Zhang, and Y. Jin, “Achieving arbitrary polygonal thermal harvesting devices with homogeneous parameters through linear mapping function,” Energy Convers. Manage. 165(1), 263 (2018).

Energy Environ. Sci. (1)

T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C. W. Qiu, “Theoretical realization of an ultra-efficient thermal energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537 (2013).
[Crossref]

Int. J. Heat Mass Tran. (3)

Y. Liu, W. Guo, and T. Han, “Arbitrarily polygonal transient thermal cloaks with natural bulk materials in bilayer configurations,” Int. J. Heat Mass Tran. 115, 1–5 (2017).
[Crossref]

X. Y. Shen and J. P. Huang, “Thermally hiding an object inside a cloak with feeling,” Int. J. Heat Mass Tran. 78, 1–6 (2014).
[Crossref]

G. Q. Xu, H. C. Zhang, Q. Zou, and Y. Jin, “Predicting and analyzing interaction of the thermal cloaking performance through response surface method,” Int. J. Heat Mass Tran. 109, 746–754 (2017).
[Crossref]

J. Appl. Phys. (1)

T. Chen, C. N. Weng, and Y. L. Tsai, “Materials with constant anisotropic conductivity as a thermal cloak or concentrator,” J. Appl. Phys. 117(5), 054904 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. Yang, L. Huang, F. Chen, and W. Xu, “Heat flux and temperature field cloaks for arbitrarily shaped objects,” J. Phys. D Appl. Phys. 46(30), 305102 (2013).
[Crossref]

Nat. Commun. (1)

Y. Li, X. Bai, T. Yang, H. Luo, and C. W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9(1), 273 (2018).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Lett. A (1)

T. Yang, Q. Wu, W. Xu, D. Liu, L. Huang, and F. Chen, “A thermal ground cloak,” Phys. Lett. A 380(7-8), 965–969 (2016).
[Crossref]

Phys. Rev. Lett. (3)

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “S. and Guenneau, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110(19), 195901 (2013).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. L. Thong, B. Li, and C. W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112(5), 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112(5), 054301 (2014).
[Crossref] [PubMed]

Sci. Rep. (2)

T. Han, T. Yuan, B. Li, and C. W. Qiu, “Homogeneous thermal cloak with constant conductivity and tunable heat localization,” Sci. Rep. 3(1), 1593 (2013).
[Crossref] [PubMed]

J. Wang, Y. Bi, and Q. Hou, “Three-dimensional illusion thermal device for location camouflage,” Sci. Rep. 7(1), 7541 (2017).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Contrastive transformations of current techniques and proposed cloak. Among the subgraphs, the grey, orange, and write domains respectively denote the functional, thermal invisible and rotated initial regions. (a) Conventional shape cloak; (b) Unconventional shape cloak with non-continuous profiles. Such devices are achieved by two steps [23]: first, internal rotation of the initial region (from purple dot profile to write polygon); second, expansion of the rotated initial region (from write domain to orange region); (c) “complete” arbitrary cloak.
Fig. 2
Fig. 2 Transformations for the Case 1. (a) Unconventional transformation for arbitrarily polygonal thermal cloak; (b) Further transformation for Case 1. Such transformation is realized through mapping the internal black dot polygon (original region) onto the gold line polygon (objective polygon), i.e., the external profile keeps unchanged. Concomitantly, the functional regions are changed. (c) Enlarged view for the proposed maps. Note that, the original vertexes can be mapped onto either the objective vertexes or the adjacent sides.
Fig. 3
Fig. 3 Transformations for the Case 2. (a) Unconventional transformation for arbitrarily polygonal thermal cloak; (b) Further transformation for Case 2. Such transformation is realized through mapping the external black dot polygon (original region) onto the gold line polygon (objective polygon), i.e., the internal profile keeps unchanged. Concomitantly, the functional regions are changed. (c) Enlarged view for the maps. Note that, the original vertexes can be mapped onto either the objective vertexes or the adjacent sides.
Fig. 4
Fig. 4 Geometrical model for the proposed “complete” arbitrary cloak. (a) Hexagon-triangle scheme; (b) Pentagon-square scheme; (c) Square-pentagon scheme; (d) Triangle-hexagon scheme.
Fig. 5
Fig. 5 Temperature distributions of the proposed schemes. Among the above subgraphs, (a) and (b) present the temperature distributions of the hexagon-triangle and pentagon-square schemes for Case 1; (c) and (d) demonstrate the thermal profiles of the square-pentagon and triangle-hexagon schemes for Case 2. The white lines represent the isotherms.
Fig. 6
Fig. 6 Temperatures on the lines of y = 0 m. (a) and (b) present the measured temperatures of the hexagon-triangle and pentagon-square schemes for Case 1; (c) and (d) present the measured temperatures of the square-pentagon and triangle-hexagon schemes for Case 2.
Fig. 7
Fig. 7 Temperatures on the lines of x = 0.1 m. (a) and (b) present the measured temperatures of the hexagon-triangle and pentagon-square schemes for Case 1; (c) and (d) present the measured temperatures of the square-pentagon and triangle-hexagon schemes for Case 2. The black dash lines denote the temperature band gaps between the observed highest and lowest temperatures.

Tables (4)

Tables Icon

Table 1 Normalized diagonal conductivity components (κ”' /κ') for Case 1

Tables Icon

Table 2 Normalized diagonal conductivity components (κ”' /κ') for Case 2

Tables Icon

Table 3 Selected media and related conductivities for Case 1

Tables Icon

Table 4 Selected media and related conductivities for Case 2

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A n ( r 2 sin (2n1)π N , r 2 cos (2n1)π N ); B n ( r 2 sin (2n+1)π N , r 2 cos (2n+1)π N ); A n ' ( r 1 sin 2nπ N , r 1 cos 2nπ N ); A n '' ( r 0 sin 2nπ N , r 0 cos 2nπ N ); E n ' ( r 1 sin 2( n1 )π N , r 1 cos 2( n1 )π N ); E n '' ( r 0 sin 2( n1 )π N , r 0 cos 2( n1 )π N ).
{ x I/II '' = a 1,I/II x I/II ' + b 1,I/II y I/II ' ( x I/II ' )+ c 1,I/II y I/II '' ( x I/II '' )= d 1,I/II x I/II ' + e 1,I/II y I/II ' ( x I/II ' )+ f 1,I/II z I/II '' = z I/II ' .
y=tan (2 n t,in 1)2π N in tan 2π N in x+ r 0 cos 2 n t,in π N in r 0 tan 2π N in tan (2 n t,in 1)2π N in sin 2 n t,in π N in .
x ''' = r 0 ''' sin θ ''' = r 0 cos (2 n t,in 1)π N in sin θ 1 ''' cos( θ 1 ''' (2 n t,in 1)π N in ) , θ 1 ''' [ 2( n t,in 1 )π N in , 2 n t,in π N in ],
y ''' = r 0 tan (2 n t,in 1)2π N in tan 2π N in ( x ''' r 0 sin 2 n t,in π N in )+ r 0 cos 2 n t,in π N in .
( a 2(1),I b 2(1),I c 2(1),I )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 2 sin (2n+1)π N r 2 cos (2n+1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 ) 1 ( r 2 sin (2n1)π N r 2 sin (2n+1)π N x E''' ''' ).
( d 2(1),I e 2(1),I f 2(1),I )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 2 sin (2n+1)π N r 2 cos (2n+1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 ) 1 ( r 2 cos (2n1)π N r 2 cos (2n+1)π N y E''' ''' ).
( a 2(1),II b 2(1),II c 2(1),II )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 r 0 sin 2( n1 )π N r 0 cos 2( n1 )π N 1 ) 1 ( r 2 sin (2n1)π N x A''' ''' x E''' ''' ).
( d 2(1),II e 2(1),II f 2(1),II )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 r 0 sin 2( n1 )π N r 0 cos 2( n1 )π N 1 ) 1 ( r 2 cos (2n1)π N y A''' ''' y E''' ''' ).
y=tan (2 n t,ext 1)2π N ext tan 2π N ext x+ r 2 cos (2 n t,ext 1)π N ext + r 2 tan 2π N ext tan (2 n t,ext 1)2π N ext sin (2 n t,ext 1)π N ext .
x ''' = r 2 ''' sin θ ''' = r 2 cos (2 n t,ext 1)π N ext sin θ 2 ''' cos( θ 2 ''' (2 n t,ext 1)π N ext ) , θ 2 ''' [ (2 n t,ext 1)π N ext , (2 n t,ext +1)π N ext ],
y ''' = r 2 tan 2π N ext tan (2 n t,ext 1)2π N ext ( sin (2 n t,ext 1)π N ext x ''' r 2 )+ r 2 cos (2 n t,ext 1)π N ext .
( a 2(2),I b 2(2),I c 2(2),I )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 2 sin (2n+1)π N r 2 cos (2n+1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 ) 1 ( x F''' ''' x G''' ''' r 0 sin 2nπ N ).
( d 2(2),I e 2(2),I f 2(2),I )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 2 sin (2n+1)π N r 2 cos (2n+1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 ) 1 ( y F''' ''' y G''' ''' r 0 cos 2nπ N ).
( a 2(2),II b 2(2),II c 2(2),II )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 r 0 sin 2( n1 )π N r 0 cos 2( n1 )π N 1 ) 1 ( x A''' ''' r 0 sin 2nπ N r 0 sin 2( n1 )π N ).
( d 2(2),II e 2(2),II f 2(2),II )= ( r 2 sin (2n1)π N r 2 cos (2n1)π N 1 r 0 sin 2nπ N r 0 cos 2nπ N 1 r 0 sin 2( n1 )π N r 0 cos 2( n1 )π N 1 ) 1 ( y F''' ''' r 0 cos 2nπ N r 0 cos 2( n1 )π N ).
J=[ a 2(1/2),I/II b 2(1/2),I/II d 2(1/2),I/II e 2(1/2),I/II ][ a 1,I/II b 1,I/II d 1,I/II e 1,I/II ].

Metrics