Abstract

By combining the surface plasmon enhancement technique with gating effect, a tunable blue lighting emitting diode (LED) based on graphene/Ag nanoparticles (NPs)-polymethyl methacrylate (PMMA)/graphene/p-GaN heterostructure has been achieved. The surface plasmon enhancement is introduced through spin-coating Ag nanoparticles on graphene/p-GaN heterostructure while the gating effect is demonstrated through a graphene/PMMA/graphene sandwich structure, where the top graphene layer acts as the gate electrode. Compared with initial graphene/p-GaN heterostructure LEDs, the electroluminescence (EL) emission intensity of Ag NPs/graphene/p-GaN heterostructure LEDs has been largely enhanced, attributing to the surface plasmon resonance (SPR) of Ag nanoparticles. The EL emission intensity of graphene/Ag NPs-PMMA/graphene/p-GaN heterostructure LEDs can further be gate-tunable effectively through exerting a static voltage between the sandwich structure, which tunes the Fermi level of graphene contacting with p-GaN. These results indicate that through sophisticated design, graphene/Ag NPs-PMMA/graphene/p-GaN heterostructure LEDs can be a potential candidate for many essential electronic and optoelectronic applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced ultraviolet emission from Au/Ag-nanoparticles@MgO/ZnO heterostructure light-emitting diodes: A combined effect of exciton- and photon- localized surface plasmon couplings

C. Zhang, H. Y. Xu, W. Z. Liu, L. Yang, J. Zhang, L. X. Zhang, J. N. Wang, J. G. Ma, and Y. C. Liu
Opt. Express 23(12) 15565-15574 (2015)

Localized surface plasmon-enhanced near-ultraviolet emission from InGaN/GaN light-emitting diodes using silver and platinum nanoparticles

Sang-Hyun Hong, Chu-Young Cho, Sang-Jun Lee, Sang-Youp Yim, Wantae Lim, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 21(3) 3138-3144 (2013)

Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer

Zhi-Guo Yu, Li-Xia Zhao, Xue-Cheng Wei, Xue-Jiao Sun, Ping-Bo An, Shi-Chao Zhu, Lei Liu, Li-Xin Tian, Feng Zhang, Hong-Xi Lu, Jun-Xi Wang, Yi-Ping Zeng, and Jin-Min Li
Opt. Express 22(S6) A1596-A1603 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  2. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
    [Crossref] [PubMed]
  3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
    [Crossref] [PubMed]
  4. A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  6. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
    [Crossref] [PubMed]
  7. Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
    [Crossref] [PubMed]
  8. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
    [Crossref] [PubMed]
  9. X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
    [Crossref]
  10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  11. S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
    [Crossref]
  12. X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
    [Crossref] [PubMed]
  13. P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
    [Crossref]
  14. Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
    [Crossref] [PubMed]
  15. S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
    [Crossref]
  16. J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
    [Crossref]
  17. S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).
  18. N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
    [Crossref]
  19. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
    [Crossref]
  20. J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
    [Crossref]
  21. S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
    [Crossref]
  22. M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
    [Crossref]
  23. Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
    [Crossref]
  24. Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
    [Crossref]
  25. J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
    [Crossref]
  26. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
    [Crossref] [PubMed]
  27. Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
    [Crossref]
  28. S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
    [Crossref]
  29. C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
    [Crossref]
  30. S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
    [Crossref]
  31. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
    [Crossref]
  32. S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
    [Crossref] [PubMed]
  33. S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
    [Crossref]
  34. S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
    [Crossref] [PubMed]
  35. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
    [Crossref]
  36. S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
    [Crossref]
  37. H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
    [Crossref]
  38. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]

2017 (2)

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

2016 (5)

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

2015 (5)

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

2013 (2)

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

2012 (6)

S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
[Crossref] [PubMed]

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

2011 (1)

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

2010 (1)

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

2009 (3)

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

2008 (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

2007 (2)

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

2002 (2)

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

2001 (1)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

1999 (1)

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

1993 (1)

N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

1991 (2)

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
[Crossref]

S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
[Crossref]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Appleton, B. R.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Banerjee, S. K.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bekyarova, E.

S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
[Crossref] [PubMed]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Blake, P.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Boebinger, G. S.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Britnell, L.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Cao, A.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Chang, C. W.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Chen, F. R.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Chen, H.

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Chen, L. C.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Chen, P.

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Chen, S.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Chen, W.

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

Chen, Y. F.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Chiu, C. C.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Chung, S. J.

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

Colombo, L.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Dai, Q.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Dong, J. J.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Dresselhaus, G.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

Dresselhaus, M. S.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

Dröscher, S.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Ensslin, K.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Fan, Y.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Fang, W.

Feng, S.

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

Gao, H. L.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Garcia de Arquer, F. P.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Geim, A. K.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Gila, B.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Gorbachev, R. V.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Haddon, R. C.

S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
[Crossref] [PubMed]

Harada, Y.

S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
[Crossref]

Hasan, T.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Hebard, A. F.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Ho, J. K.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Huang, C. N.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Ihn, T.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Jalil, R.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Jamali, S. B.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Jia, Y.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Jiang, Z.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Jong, C. S.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kai, J. J.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Kim, D. Y.

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Kim, K. S.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Kim, M. H.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Kim, P.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Kim, S. M.

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Kim, S. W.

Kim, T. H.

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Koppens, F. H.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Kwak, S. S.

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, H. J.

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

Lee, S.

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Lee, Y.

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Lemaitre, M.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Li, C.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Li, C. Y.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Li, E.

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Li, J.

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

Li, J. F.

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Li, X.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Li, X. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Li, Z.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Lin, S.

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Lin, S. S.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Lin, X.

Liu, C.

Liu, L.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Liu, X.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Liu, X. Y.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Liu, Z.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Lu, M. L.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Lu, Y.

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

Luo, J.

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Maan, J. C.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Malard, L. M.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

Mao, H. B.

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

Masayuki, S.

N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Mayorov, A. S.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Meng, J. H.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Meyer, J. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Miao, X.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Molitor, F.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Morozov, S. V.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
[Crossref]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nakamura, S.

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
[Crossref]

S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Novoselov, K. S.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Pan, T. C.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Panneerselvam, R.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Park, S. J.

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

Park, Y.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Peres, N. M.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Pimenta, M. A.

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Piprek, J.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Ponomarenko, L. A.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Ram-Mohan, L. R.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Roulleau, P.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Ruoff, R. S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Sarkar, S.

S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Schubert, E. F.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Schubert, M. F.

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Seno, M.

S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
[Crossref]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
[Crossref]

Shen, B.

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Shen, X.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Shih, K. K.

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

Shuji, N.

N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Si, F. T.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Song, E. B.

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Stampfer, C.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stormer, H. L.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Studerus, P.

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

Suh, E. K.

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

Takashi, M.

N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

Tan, W. C.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Taniguchi, T.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Tian, Z.-Q.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Tongay, S.

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Vurgaftman, I.

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

Wang, J.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Wang, J. X.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Wang, K.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wang, P.

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Watanabe, K.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Wei, J.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wu, D.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Wu, H. A.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Wu, J.

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

Wu, Y.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Wu, Z.

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Wu, Z. Q.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xie, S. Y.

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Xu, G.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Xu, J.

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

Xu, K.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Xu, P.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Xu, W.

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Xu, W. L.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Xu, Z.

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Xu, Z. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Yang, H.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Yang, Q.

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

Yang, Y. J.

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Yang, Z. L.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Yin, W.

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

Yin, Z. G.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Yu, Q.

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Zeitler, U.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Zhang, R.

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Zhang, S.

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

Zhang, S. G.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Zhang, S. J.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhang, X.

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Zhang, X. W.

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

Zhang, Y.

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Zhang, Y. J.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Zheng, Y. D.

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

Zhong, H.

X. Li, S. Lin, X. Lin, Z. Xu, P. Wang, S. Zhang, H. Zhong, W. Xu, Z. Wu, and W. Fang, “Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector,” Opt. Express 24(1), 134–145 (2016).
[Crossref] [PubMed]

Z. Wu, X. Li, H. Zhong, S. Zhang, P. Wang, T. H. Kim, S. S. Kwak, C. Liu, H. Chen, S. W. Kim, and S. Lin, “Graphene/h-BN/ZnO van der Waals tunneling heterostructure based ultraviolet photodetector,” Opt. Express 23(15), 18864–18871 (2015).
[Crossref] [PubMed]

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

Zhong, H. K.

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Zhu, H.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

S. Sarkar, E. Bekyarova, and R. C. Haddon, “Chemistry at the Dirac point: Diels-Alder reactivity of graphene,” Acc. Chem. Res. 45(4), 673–682 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. W. Chang, W. C. Tan, M. L. Lu, T. C. Pan, Y. J. Yang, and Y. F. Chen, “Graphene/SiO2/p‐GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters,” Adv. Funct. Mater. 23(32), 4043–4048 (2013).
[Crossref]

Adv. Mater. (1)

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22(25), 2743–2748 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (8)

S. Lin, X. Li, S. Zhang, P. Wang, Z. Xu, H. Zhong, Z. Wu, and H. Chen, “Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping,” Appl. Phys. Lett. 107(19), 1530 (2015).
[Crossref]

S. Dröscher, P. Roulleau, F. Molitor, P. Studerus, C. Stampfer, K. Ensslin, and T. Ihn, “Quantum capacitance and density of states of graphene,” Appl. Phys. Lett. 96 (15), 152104 (2012).

H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, “Self-adaptive electronic contact between graphene and semiconductors,” Appl. Phys. Lett. 100(12), 122108 (2012).
[Crossref]

J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, H. L. Gao, and X. Liu, “Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes,” Appl. Phys. Lett. 100(17), 171109 (2012).
[Crossref]

S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett. 58(18), 183507 (1991).
[Crossref]

M. H. Kim, M. F. Schubert, Q. Dai, K. S. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18), 15–67 (2007).
[Crossref]

Y. Wu, T. Hasan, X. Li, P. Xu, Y. Wang, X. Shen, X. Liu, and Q. Yang, “High-efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes,” Appl. Phys. Lett. 106(5), 051108 (2015).
[Crossref]

S. Lee, Y. Lee, D. Y. Kim, E. B. Song, and S. M. Kim, “Back-gate tuning of Schottky barrier height in graphene/zinc-oxide photodiodes,” Appl. Phys. Lett. 102(24), 041301 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Y. Xie, Y. D. Zheng, P. Chen, R. Zhang, B. Shen, and H. Chen, “Optical properties of Mg-implanted GaN,” Appl. Phys., A Mater. Sci. Process. 75(3), 363–365 (2002).
[Crossref]

J. Appl. Phys. (2)

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89(11), 5815–5875 (2001).
[Crossref]

J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. 86(8), 4491–4497 (1999).
[Crossref]

J. Cryst. Growth (1)

S. J. Chung, E. K. Suh, H. J. Lee, H. B. Mao, and S. J. Park, “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments,” J. Cryst. Growth 235(1), 49–54 (2002).
[Crossref]

J. Raman Spectrosc. (1)

Y. Zhao, Y. J. Zhang, J. H. Meng, S. Chen, R. Panneerselvam, C. Y. Li, S. B. Jamali, X. Li, Z. L. Yang, J. F. Li, and Z.-Q. Tian, “A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates,” J. Raman Spectrosc. 47(6), 662–667 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32(2), L8–L11 (1993).
[Crossref]

S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN PN junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. 30(Part 2, No. 12A), L1998–L2001 (1991).
[Crossref]

Nano Energy (4)

S. Lin, Y. Lu, J. Xu, S. Feng, and J. F. Li, “High performance Graphene/semiconductor van der Waals Heterostructure Optoelectronic Devices,” Nano Energy 40, 122–148 (2017).
[Crossref]

P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, and S. Lin, “Tunable graphene/indium phosphide heterostructure solar cells,” Nano Energy 13, 509–517 (2015).
[Crossref]

X. Li, W. Chen, S. Zhang, Z. Wu, P. Wang, Z. Xu, H. Chen, W. Yin, H. Zhong, and S. Lin, “18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell,” Nano Energy 16, 310–319 (2015).
[Crossref]

Z. Wu, Y. Lu, W. Xu, Y. Zhang, J. Li, and S. Lin, “Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-Emitting-Diode by Ag Nano-particles,” Nano Energy 30, 362–367 (2016).
[Crossref]

Nano Lett. (2)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 2396–2399 (2011).
[Crossref] [PubMed]

Nanoscale (1)

S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q. Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells,” Nanoscale 8(1), 226–232 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity,” Nanotechnology 27(48), 48LT03 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. Garcia de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363–368 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rep. (1)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep. 473(5), 51–87 (2009).
[Crossref]

Phys. Rev. X (1)

S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, “Rectification at graphene-semiconductor interfaces: zero-gap semiconductor based diodes,” Phys. Rev. X 2(1), 011002 (2012).
[Crossref]

Rsc Adv. (1)

J. Wu, S. Feng, Z. Wu, Y. Lu, and S. Lin, “Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell,” Rsc Adv. 7(53), 33413–33418 (2017).
[Crossref]

Science (5)

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

A. K. Geim, “Graphene: Status and Prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science 324(5932), 1312–1314 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic structure of the graphene/Ag NPs-PMMA/graphene/p-GaN heterostructure LED. (b) The PL spectrum of the p-GaN substrate. (c) Raman spectra of monolayer graphene with and without Ag nanoparticles. (d) The schematic electronic band structure of graphene/p-GaN heterojunction LED.
Fig. 2
Fig. 2 The schematic electronic band structure of graphene/p-GaN heterojunction LED (a) under forward bias (b) under reversed bias. (c) The I-V curve of graphene/p-GaN heterojunction from −10V to 10V. (d) The absorption spectrum of Ag nanoparticles with the diameter of 100nm.
Fig. 3
Fig. 3 (a) EL spectra of graphene/p-GaN heterojunction LEDs from 2.5mA to 4.5mA. (b) EL spectra of Ag NPs/graphene/p-GaN heterojunction LEDs from 2.5mA to 4.5mA. (c) The variation of EL intensity of graphene/p-GaN heterojunction LEDs and Ag NPs/graphene/p-GaN heterojunction LEDs with the increasing of current. (d) The schematic process of carrier kinetics in Ag NPs/graphene/p-GaN heterojunction LEDs.
Fig. 4
Fig. 4 (a) EL spectra of graphene/Ag NPs-PMMA/graphene/p-GaN heterojunction LEDs under the gate voltage from 0V to −10V. (b) The variation of EL emission intensity of graphene/Ag NPs-PMMA/graphene/p-GaN heterojunction LEDs with the gate voltage from 0V to −10 V. (c) The schematic electronic band structure of graphene/Ag NPs-PMMA/graphene/p-GaN heterojunction LEDs under the gate voltage. (d) The schematic process of carrier kinetics in graphene/Ag NPs-PMMA/graphene/p-GaN heterojunction LEDs under the gate voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J= J 0 ( exp qV N IF KT 1 )
J 0 = A * T 2 exp( q Φ barrier KT )