Abstract

The angular resolution of current near-eye display devices is still far below human-eye acuity. How to achieve retina-level resolution while keeping wide field-of-view (FOV) remains a great challenge. In this work, we demonstrate a multi-resolution foveated display with two display panels and an optical combiner. The first display panel provides a wide FOV but relatively low resolution for the surrounding region, while the second one offers an ultra-high resolution for the central fovea region, by an optical minifying system which enhances the effective resolution by 5 ×. In addition, a switchable Pancharatnam-Berry phase deflector is employed to shift the high-resolution region. The proposed design effectively reduces the pixelation and screen-door effect in near-eye displays.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the resolution of a near-eye display with a Pancharatnam–Berry phase deflector

Yun-Han Lee, Tao Zhan, and Shin-Tson Wu
Opt. Lett. 42(22) 4732-4735 (2017)

Design of retinal-projection-based near-eye display with contact lens

Yuhang Wu, Chao Ping Chen, Lantian Mi, Wenbo Zhang, Jingxin Zhao, Yifan Lu, Weiqian Guo, Bing Yu, Yang Li, and Nizamuddin Maitlo
Opt. Express 26(9) 11553-11567 (2018)

Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement

Ping-Yen Chou, Jui-Yi Wu, Shang-Hao Huang, Chun-Ping Wang, Zong Qin, Cheng-Ting Huang, Po-Yuan Hsieh, Hsin-Hseuh Lee, Ting-Hsuan Lin, and Yi-Pai Huang
Opt. Express 27(2) 1164-1177 (2019)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. P. Rolland, “Head-worn displays: A review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  2. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  3. B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).
  4. C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
    [Crossref]
  5. A. Ghosh, E. P. Donoghue, I. Khayrullin, T. Ali, I. Wacyk, K. Tice, F. Vazan, L. Sziklas, D. Fellowes, and R. Draper, “Directly patterned 2645 ppi full color OLED microdisplay for head mounted wearables,” SID Symp. Dig. Tech. Pap. 47(1), 837–840 (2016).
  6. S. Kawashima, H. Shishido, S. Oshita, S. Yoshitomi, A. Yamashita, T. Ishitani, A. Sato, M. Jincho, Y. Shima, M. Katayama, and S. Yamazaki, “A 1058‐ppi 4K ultrahigh-resolution and high aperture LCD with transparent pixels using OS/OC technology,” SID Symp. Dig. Tech. Pap. 48(1), 242–245 (2017).
    [Crossref]
  7. H. S. Lee, S. Jang, J. Noh, H. Jeon, B. S. Choi, Y. M. Jeon, K. Song, J. Song, H. Y. Chu, and S. Kim, “An ultra-high density 1.96″ UHD 2250ppi display,” SID Symp. Dig. Tech. Pap. 48(1), 403–405 (2017).
  8. K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
    [Crossref]
  9. T. Fujii, C. Kon, Y. Motoyama, K. Shimizu, T. Shimayama, T. Yamazaki, T. Kato, S. Sakai, K. Hashikaki, K. Tanaka, and Y. Nakano, “4032 ppi high‐resolution OLED microdisplay,” SID Symp. Dig. Tech. Pap. 26(3), 178–186 (2018).
    [Crossref]
  10. Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
    [Crossref]
  11. G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
    [Crossref] [PubMed]
  12. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  13. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  14. X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
    [Crossref] [PubMed]
  15. Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
    [Crossref]
  16. F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
    [Crossref]
  17. Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
    [Crossref] [PubMed]
  18. J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
    [Crossref]
  19. T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref] [PubMed]
  20. G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthal. 6(Suppl.), 1–103 (1935).
  21. H. Hua and S. Liu, “Dual-sensor foveated imaging system,” Appl. Opt. 47(3), 317–327 (2008).
    [Crossref] [PubMed]
  22. Y. Qin and H. Hua, “Continuously zoom imaging probe for the multi-resolution foveated laparoscope,” Biomed. Opt. Express 7(4), 1175–1182 (2016).
    [Crossref] [PubMed]
  23. J. P. Rolland, A. Yoshida, L. D. Davis, and J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37(19), 4183–4193 (1998).
    [Crossref] [PubMed]
  24. M. Shenker, “Optical design criteria for binocular helmet-mounted displays,” in Display System Optics, A. Cox, R. Hartmann, eds., Proc. SPIE 778, 70–78 (1987).
  25. U. Konttori, K. Melakari, and O. A. O. Sahlsten, “Display apparatus and method of displaying using focus and context displays,” U.S. Patent 9,711,072 (July 18, 2017).
  26. K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
    [Crossref]
  27. L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
    [Crossref]
  28. A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
    [Crossref] [PubMed]
  29. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” Proc. IS&T 2000 PICS Conference, 135–138 (2000).
  30. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44(5), 247–262 (1956).
  31. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
    [Crossref]
  32. K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
    [Crossref] [PubMed]
  33. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  34. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref] [PubMed]

2018 (6)

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
[Crossref] [PubMed]

2017 (8)

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[Crossref] [PubMed]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

2016 (2)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

Y. Qin and H. Hua, “Continuously zoom imaging probe for the multi-resolution foveated laparoscope,” Biomed. Opt. Express 7(4), 1175–1182 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (2)

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

2008 (3)

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

H. Hua and S. Liu, “Dual-sensor foveated imaging system,” Appl. Opt. 47(3), 317–327 (2008).
[Crossref] [PubMed]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref] [PubMed]

2006 (1)

O. Cakmakci and J. P. Rolland, “Head-worn displays: A review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

1998 (1)

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44(5), 247–262 (1956).

1935 (1)

G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthal. 6(Suppl.), 1–103 (1935).

Aksit, K.

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

Asai, Y.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Balram, N.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Bastani, B.

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Bauer, A.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

Berry, S.

Bos, P.

Cakmakci, O.

O. Cakmakci and J. P. Rolland, “Head-worn displays: A review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chang, C. C.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Chou, P. Y.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Chuang, F. M.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Daitoh, T.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Davis, L. D.

Escuti, M. J.

Finnemeyer, V.

Funt, B.

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Furuya, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Gao, K.

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Gou, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Heide, F.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Horiuchi, S.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Hua, H.

Huang, F. C.

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

Huang, Y. P.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Iwase, Y.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Javidi, B.

Jiang, H.

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Jung, S. H.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kanazawa, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Kang, I. B.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Kautz, J.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Kim, J.

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Kimura, K.

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

Kitagawa, H.

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

Kramida, G.

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

Kudenov, M. W.

Kusakabe, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Lanman, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Lee, G.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Lee, Y. H.

Li, Y.

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, S.

Lo, H. H.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Lopes, W.

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

Luebke, D.

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Matsuo, T.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Matusik, W.

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

McGinty, C.

Miskiewicz, M. N.

Nojiri, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Oh, C.

Onoyama, Y.

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

Osterberg, G.

G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthal. 6(Suppl.), 1–103 (1935).

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44(5), 247–262 (1956).

Payson, H.

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Peng, K. E.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Pulli, K.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Qin, Y.

Reddy, D.

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

Reif, J. H.

Roberts, B.

Rolland, J. P.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

O. Cakmakci and J. P. Rolland, “Head-worn displays: A review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. P. Rolland, A. Yoshida, L. D. Davis, and J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37(19), 4183–4193 (1998).
[Crossref] [PubMed]

Schiesser, E. M.

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

Shi, L.

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

Shirley, P.

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

Tabiryan, N. V.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tagawa, A.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Takeuchi, Y.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Tan, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tanaka, T.

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

Toyomura, N.

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

Turner, E.

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Vieri, C.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

Vornehm, J.

Wang, X.

Watanabe, T.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Wu, J. Y.

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Wu, S. T.

Yamamoto, K.

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Yang, J. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yoon, S. Y.

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Yoshida, A.

Yoshimura, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

Zhan, T.

T. Zhan, Y. H. Lee, and S. T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref] [PubMed]

Y. H. Lee, T. Zhan, and S. T. Wu, “Enhancing the resolution of a near-eye display with a Pancharatnam-Berry phase deflector,” Opt. Lett. 42(22), 4732–4735 (2017).
[Crossref] [PubMed]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

ACM Trans. Graph. (1)

F. Heide, D. Lanman, D. Reddy, J. Kautz, K. Pulli, and D. Luebke, “Cascaded displays: spatiotemporal superresolution using offset pixel layers,” ACM Trans. Graph. 33(4), 60 (2014).
[Crossref]

ACM Trans. Graphic (2)

K. Akşit, W. Lopes, J. Kim, P. Shirley, and D. Luebke, “Near-eye varifocal augmented reality display using see-through screens,” ACM Trans. Graphic 36(6), 189 (2017).
[Crossref]

L. Shi, F. C. Huang, W. Lopes, W. Matusik, and D. Luebke, “Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics,” ACM Trans. Graphic 36(6), 236 (2017).
[Crossref]

Acta Ophthal. (1)

G. Osterberg, “Topography of the layer of rods and cones in the human retina,” Acta Ophthal. 6(Suppl.), 1–103 (1935).

Appl. Opt. (2)

Biomed. Opt. Express (1)

IEEE Trans. Vis. Comput. Graph. (1)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref] [PubMed]

Inf. Disp. (1)

B. Bastani, E. Turner, C. Vieri, H. Jiang, B. Funt, and N. Balram, “Foveated pipeline for AR/VR head-mounted displays,” Inf. Disp. 33(6), 14–19 (2017).

J. Disp. Technol. (1)

O. Cakmakci and J. P. Rolland, “Head-worn displays: A review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Soc. Inf. Disp. (5)

K. Kimura, Y. Onoyama, T. Tanaka, N. Toyomura, and H. Kitagawa, “New pixel driving circuit using self‐discharging compensation method for high‐resolution OLED micro displays on a silicon backplane,” J. Soc. Inf. Disp. 25(3), 167–176 (2017).
[Crossref]

C. Vieri, G. Lee, N. Balram, S. H. Jung, J. Y. Yang, S. Y. Yoon, and I. B. Kang, “An 18 megapixel 4.3″ 1443 ppi 120 Hz OLED display for wide field of view high acuity head mounted displays,” J. Soc. Inf. Disp. 26(5), 314–324 (2018).
[Crossref]

Y. Iwase, A. Tagawa, Y. Takeuchi, T. Watanabe, S. Horiuchi, Y. Asai, K. Yamamoto, T. Daitoh, and T. Matsuo, “A novel low-power gate driver architecture for large 8 K 120 Hz liquid crystal display employing IGZO technology,” J. Soc. Inf. Disp. 26(5), 304–313 (2018).
[Crossref]

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A YC-separation-type projector: High dynamic range with double modulation,” J. Soc. Inf. Disp. 16(2), 383–391 (2008).
[Crossref]

J. Y. Wu, P. Y. Chou, K. E. Peng, Y. P. Huang, H. H. Lo, C. C. Chang, and F. M. Chuang, “Resolution enhanced light field near eye display using e-shifting method with birefringent plate,” J. Soc. Inf. Disp. 26(5), 269–279 (2018).
[Crossref]

Nat. Commun. (1)

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).
[Crossref] [PubMed]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Proc. IEEE (1)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Proc. Indian Acad. Sci. A (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44(5), 247–262 (1956).

Proc. R. Soc. Lond. A (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 45–57 (1984).
[Crossref]

Other (7)

M. Shenker, “Optical design criteria for binocular helmet-mounted displays,” in Display System Optics, A. Cox, R. Hartmann, eds., Proc. SPIE 778, 70–78 (1987).

U. Konttori, K. Melakari, and O. A. O. Sahlsten, “Display apparatus and method of displaying using focus and context displays,” U.S. Patent 9,711,072 (July 18, 2017).

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” Proc. IS&T 2000 PICS Conference, 135–138 (2000).

T. Fujii, C. Kon, Y. Motoyama, K. Shimizu, T. Shimayama, T. Yamazaki, T. Kato, S. Sakai, K. Hashikaki, K. Tanaka, and Y. Nakano, “4032 ppi high‐resolution OLED microdisplay,” SID Symp. Dig. Tech. Pap. 26(3), 178–186 (2018).
[Crossref]

A. Ghosh, E. P. Donoghue, I. Khayrullin, T. Ali, I. Wacyk, K. Tice, F. Vazan, L. Sziklas, D. Fellowes, and R. Draper, “Directly patterned 2645 ppi full color OLED microdisplay for head mounted wearables,” SID Symp. Dig. Tech. Pap. 47(1), 837–840 (2016).

S. Kawashima, H. Shishido, S. Oshita, S. Yoshitomi, A. Yamashita, T. Ishitani, A. Sato, M. Jincho, Y. Shima, M. Katayama, and S. Yamazaki, “A 1058‐ppi 4K ultrahigh-resolution and high aperture LCD with transparent pixels using OS/OC technology,” SID Symp. Dig. Tech. Pap. 48(1), 242–245 (2017).
[Crossref]

H. S. Lee, S. Jang, J. Noh, H. Jeon, B. S. Choi, Y. M. Jeon, K. Song, J. Song, H. Y. Chu, and S. Kim, “An ultra-high density 1.96″ UHD 2250ppi display,” SID Symp. Dig. Tech. Pap. 48(1), 403–405 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The trade-off between field of view and angular resolution in near-eye displays for different panel resolutions from 1K to 8K.
Fig. 2
Fig. 2 Schematic diagram of the proposed multi-resolution foveated display for near-eye display devices.
Fig. 3
Fig. 3 The unfolded layout of the optical paths for a) display panel 1 and b) panel 2.
Fig. 4
Fig. 4 The experimental photographs with the proposed multi-resolution foveated display with 4 × resolution enhancement: a) displayed image; b) the magnified green square region in (a); c) the magnified blue rectangle region in (b); d) the magnified red rectangle region in (b).
Fig. 5
Fig. 5 The experimental photographs with the proposed multi-resolution foveated display with 5 × resolution enhancement: a) displayed image; b) the magnified green square region in (a); c) the magnified blue rectangle region in (b); d) the magnified red rectangle region in (b).
Fig. 6
Fig. 6 The measured on-axis modulation transfer function for original and 4 × resolution in angular space. Note that the MTF drops to 0.5 at 20 cpd and 72 cpd for the original and 4 × resolution, respectively.
Fig. 7
Fig. 7 (a) Top view of the LC director distribution in PBD. (b) Phase delay profile of a PBD with 15° deflect angle at λ = 633 nm for LCP and RCP, respectively. (c) Active driving to result in a switching between deflection and non-deflection states. (d) The polarization state change for the LCP wave deflected by PBD and reflected by mirror.
Fig. 8
Fig. 8 The experimental results of the proposed multi-resolution display with a PBD as image shifter: a) displayed image with high-resolution region in the center; b) displayed image with shifted high-resolution region; c) the magnified blue rectangle region in (a); d) the magnified blue rectangle region in (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R= 1 M =1+ d 1 + d 2 f c /2 ,
d 3 = d 2 +( d 1 + d 2 )/R,
J ± =R( φ )W( π )R( φ ) 1 2 [ 1 ±i ]= e ±i2φ 1 2 [ 1 i ],
φ( x,y )=( 2π/P )x,
θ=arcsin( 2λ/P ).

Metrics