Abstract

An Acousto-Optic Gyroscope (AOG) consisting of a photonic integrated device embedded into two inherently matched piezoelectric surface acoustic wave (SAW) resonators sharing the same acoustic cavity is presented. This constitutes the first demonstration of a micromachined strain-based optomechanical gyroscope that uses the effective index of the optical waveguide due to the acousto-optic effect rather than conventional displacement sensing. The theoretical analysis comparing various photonic phase sensing techniques is presented and verified experimentally for the cases based on a Mach-Zehnder interferometer, as well as a racetrack resonator. This first prototype integrates acoustic and photonic components on the same lithium niobate on insulator (LNOI) substrate and constitutes the first proof of concept demonstration of the AOG. This approach enables the development of a new class of micromachined gyroscopes that combines the advantages of both conventional microscale vibrating gyroscopes and optical gyroscopes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Acousto-optical modulation of thin film lithium niobate waveguide devices

Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, and Gianluca Piazza
Photon. Res. 7(9) 1003-1013 (2019)

Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves

Christophe Gorecki, Franck Chollet, Eric Bonnotte, and Hideki Kawakatsu
Opt. Lett. 22(23) 1784-1786 (1997)

Reflective acousto-optic modulation with surface acoustic waves

Stanley S. Hong, Michael S. Mermelstein, and Dennis M. Freeman
Appl. Opt. 43(14) 2920-2924 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Rozelle, The Hemispherical Resonator Gyro: From Wineglass to the Planets (2009), Vol. 134.
  2. T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
    [Crossref]
  3. A. Shebl, A. M. Othman, A. Mahmoud, G. Albert, Y. M. Sabry, K. Sharaf, and D. Khalil, “Ring laser gyroscope based on standard single-mode fiber and semiconductor optical amplifier,” in 2016 33rd National Radio Science Conference (NRSC) (2016), pp. 368–376.
    [Crossref]
  4. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
    [Crossref]
  5. L. Zhao, W. Li, H. Zhang, Y. Yang, A. Huang, and Z. Xiao, “Improving the scale factor for rotation sensing in a frequency sensitive integrated optical gyroscope,” in (International Society for Optics and Photonics, 2017), Vol. 10244, p. 102440E.
  6. I. P. Prikhodko, S. Nadig, J. A. Gregory, W. A. Clark, and M. W. Judy, “Half-a-month stable 0.2 degree-per-hour mode-matched MEMS gyroscope,” in (IEEE, 2017), pp. 1–4.
  7. E. E. Aktakka, J. K. Woo, and K. Najafi, “On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform,” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.
    [Crossref]
  8. E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
    [Crossref]
  9. W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
    [Crossref]
  10. Z. Luo, X. Wang, M. Jin, and S. Liu, “MEMS gyroscope yield simulation based on Monte Carlo method,” in 2012 IEEE 62nd Electronic Components and Technology Conference (2012), pp. 1636–1639.
    [Crossref]
  11. S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
    [Crossref]
  12. A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.
  13. M. S. Weinberg and A. Kourepenis, “Error sources in in-plane silicon tuning-fork MEMS gyroscopes,” J. Microelectromech. Syst. 15(3), 479–491 (2006).
    [Crossref]
  14. C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).
  15. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
    [Crossref] [PubMed]
  16. S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
    [Crossref]
  17. S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
    [Crossref] [PubMed]
  18. M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
    [Crossref] [PubMed]
  19. J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4(3), 346–348 (2017).
    [Crossref]
  20. M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
    [Crossref]
  21. B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.
  22. Y. Musha, M. Hara, H. Asano, and H. Kuwano, “Oscillator based surface acoustic wave gyroscopes,” in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016), pp. 557–560.
    [Crossref]
  23. M. Mahmoud, C. Bottenfield, L. Cai, and G. Piazza, “Fully integrated lithium niobate electro-optic modulator based on asymmetric Mach-Zehnder interferometer etched in LNOI platform,” in 2017 IEEE Photonics Conference (IPC) (2017), pp. 223–224.
  24. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
    [Crossref] [PubMed]
  25. A. Mahmoud, M. Mahmoud, L. Cai, M. S. I. Khan, J. A. Bain, T. Mukherjee, and G. Piazza, “Acousto-optic gyroscope,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018), pp. 241–244.
  26. M. Mahmoud, L. Cai, A. Mahmoud, T. Mukherjee, and G. Piazza, “Electro-optically controlled acousto-optic racetrack modulator etched in LNOI platform,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018), pp. 743–746.
  27. A. G. Webster, The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies: Being Lectures on Mathematical Physics (B. G. Teubner, 1912).
  28. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  29. H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).
  30. H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems,” J. Micromech. Microeng. 7(4), 285–309 (1997).
    [Crossref]
  31. M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89(12), 121104 (2006).
    [Crossref]
  32. A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, and M. M. de Lima, “Synchronized photonic modulators driven by surface acoustic waves,” Opt. Express 21(18), 21669–21676 (2013).
    [Crossref] [PubMed]
  33. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  34. M. Terrel, M. J. F. Digonnet, and S. Fan, “Ring-coupled Mach-Zehnder interferometer optimized for sensing,” Appl. Opt. 48(26), 4874–4879 (2009).
    [Crossref] [PubMed]
  35. M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  36. W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
    [Crossref]
  37. A. Mahmoud, M. Mahmoud, T. Mukherjee, and G. Piazza, “Investigating the Impact of Resonant Cavity Design on Surface Acoustic Wave Gyroscope,” in IEEE Inertial Sensors & Systems (IEEE, 2018).
  38. M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium Niobate on Insulator (LNOI) Grating Couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.
  39. “NANOLN JINAN Jingzheng,” http://www.nanoln.com/en/ .

2018 (2)

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

S. Gundavarapu, M. Belt, T. A. Huffman, M. A. Tran, T. Komljenovic, J. E. Bowers, and D. J. Blumenthal, “Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil,” J. Lightwave Technol. 36(4), 1185–1191 (2018).
[Crossref]

2017 (5)

M. A. Tran, T. Komljenovic, J. C. Hulme, M. J. Kennedy, D. J. Blumenthal, and J. E. Bowers, “Integrated optical driver for interferometric optical gyroscopes,” Opt. Express 25(4), 3826–3840 (2017).
[Crossref] [PubMed]

J. Li, M.-G. Suh, and K. Vahala, “Microresonator Brillouin gyroscope,” Optica 4(3), 346–348 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
[Crossref]

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

2014 (2)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of integrated hybrid silicon waveguide optical gyroscope,” Opt. Express 22(21), 24988–24993 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

2011 (1)

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

2010 (1)

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

2009 (1)

2007 (1)

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

2006 (2)

M. S. Weinberg and A. Kourepenis, “Error sources in in-plane silicon tuning-fork MEMS gyroscopes,” J. Microelectromech. Syst. 15(3), 479–491 (2006).
[Crossref]

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89(12), 121104 (2006).
[Crossref]

1998 (1)

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

1997 (1)

H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems,” J. Micromech. Microeng. 7(4), 285–309 (1997).
[Crossref]

Aktakka, E. E.

E. E. Aktakka, J. K. Woo, and K. Najafi, “On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform,” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.
[Crossref]

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

Asadian, M. H.

S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
[Crossref]

Askari, S.

S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
[Crossref]

Beck, M.

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89(12), 121104 (2006).
[Crossref]

Belt, M.

Biermann, K.

Blumenthal, D.

Blumenthal, D. J.

Bottenfield, C.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Bowers, J. E.

Cai, L.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Campanella, C. E.

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

Cantarero, A.

Cheng, R.

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

Crespo-Poveda, A.

Davaji, B.

B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.

de Lima, M. M.

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express 21(1), 556–564 (2013).
[Crossref] [PubMed]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

Digonnet, M. J. F.

Fan, S.

Fedder, G. K.

E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
[Crossref]

Fikry, W.

A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.

Fukuda, Y.

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

Gargallo, B.

Gundavarapu, S.

Hey, R.

Higuchi, T.

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

Huffman, T. A.

Hulme, J. C.

Jin, Z.

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

Kakavand, K.

S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
[Crossref]

Kennedy, M. J.

Komljenovic, T.

Kourepenis, A.

M. S. Weinberg and A. Kourepenis, “Error sources in in-plane silicon tuning-fork MEMS gyroscopes,” J. Microelectromech. Syst. 15(3), 479–491 (2006).
[Crossref]

Kulkarni, S.

B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.

Kurosawa, M.

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

Lal, A.

B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.

Lee, K.

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

Li, J.

Li, M.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

Lin, Y.

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

Lin, Z.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

Liu, S.

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

Loncar, M.

Ma, W.

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

Mahmoud, A.

A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.

Mahmoud, M.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Mahmoud, M. A. E.

A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.

Minghua, L.

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Moreira, R.

Mukherjee, T.

E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
[Crossref]

Muñoz, P.

Najafi, K.

E. E. Aktakka, J. K. Woo, and K. Najafi, “On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform,” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.
[Crossref]

Oh, H.

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

Passenberg, W.

Piazza, G.

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Pinrod, V.

B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.

Sabry, Y. M.

A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.

Santos, P. V.

Shams-Ansari, A.

Shitang, H.

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Shkel, A. M.

S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
[Crossref]

Shunzhou, L.

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Soares, F. M.

Song, M.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

Srinivasan, S.

Suh, M.-G.

Tadesse, S. A.

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

Tahraoui, A.

Takasaki, M.

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

Tatar, E.

E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
[Crossref]

Terrel, M.

Tilmans, H. A. C.

H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems,” J. Micromech. Microeng. 7(4), 285–309 (1997).
[Crossref]

Tran, M. A.

Vahala, K.

Wang, C.

Wang, W.

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

Weinberg, M. S.

M. S. Weinberg and A. Kourepenis, “Error sources in in-plane silicon tuning-fork MEMS gyroscopes,” J. Microelectromech. Syst. 15(3), 479–491 (2006).
[Crossref]

Wen, W.

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Woo, J. K.

E. E. Aktakka, J. K. Woo, and K. Najafi, “On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform,” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.
[Crossref]

Yang, S.

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

Yong, P.

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Zhang, M.

Zhang, R.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

Zhang, T.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

Zheng, X.

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

Zhou, B.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

Adv. Opt. Photonics (1)

C. Ciminelli, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Photonic technologies for angular velocity sensing,” Adv. Opt. Photonics 2, 370–404 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett. 89(12), 121104 (2006).
[Crossref]

IEEE Photonics J. (2)

M. Mahmoud, L. Cai, C. Bottenfield, and G. Piazza, “Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photonics J. 4(5), 1844–1854 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

E. Tatar, T. Mukherjee, and G. K. Fedder, “Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope,” J. Microelectromech. Syst. 26(3), 569–579 (2017).
[Crossref]

M. S. Weinberg and A. Kourepenis, “Error sources in in-plane silicon tuning-fork MEMS gyroscopes,” J. Microelectromech. Syst. 15(3), 479–491 (2006).
[Crossref]

J. Micromech. Microeng. (2)

W. Ma, Y. Lin, S. Liu, X. Zheng, and Z. Jin, “A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique,” J. Micromech. Microeng. 27(2), 025005 (2017).
[Crossref]

H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems,” J. Micromech. Microeng. 7(4), 285–309 (1997).
[Crossref]

Nat. Commun. (1)

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Optica (2)

Physical (1)

H. Oh, W. Wang, S. Yang, and K. Lee, “Development of SAW based gyroscope with high shock and thermal stability, sensors and actuators,” Physical 165, 8–15 (2011).

Sens. Actuators A Phys. (1)

M. Kurosawa, Y. Fukuda, M. Takasaki, and T. Higuchi, “A surface-acoustic-wave gyro sensor,” Sens. Actuators A Phys. 66(1-3), 33–39 (1998).
[Crossref]

Sens. Actuators B Chem. (1)

W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, “Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator,” Sens. Actuators B Chem. 125(2), 422–427 (2007).
[Crossref]

Other (19)

A. Mahmoud, M. Mahmoud, T. Mukherjee, and G. Piazza, “Investigating the Impact of Resonant Cavity Design on Surface Acoustic Wave Gyroscope,” in IEEE Inertial Sensors & Systems (IEEE, 2018).

M. Mahmoud, S. Ghosh, and G. Piazza, “Lithium Niobate on Insulator (LNOI) Grating Couplers,” in CLEO: 2015 (2015), Paper SW4I.7 (Optical Society of America, 2015), p. SW4I.7.

“NANOLN JINAN Jingzheng,” http://www.nanoln.com/en/ .

D. Rozelle, The Hemispherical Resonator Gyro: From Wineglass to the Planets (2009), Vol. 134.

T. Zhang, Z. Lin, M. Song, B. Zhou, and R. Zhang, “Study on the thermoforming process of Hemispherical Resonator Gyros (HRGs),” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 140–141.
[Crossref]

A. Shebl, A. M. Othman, A. Mahmoud, G. Albert, Y. M. Sabry, K. Sharaf, and D. Khalil, “Ring laser gyroscope based on standard single-mode fiber and semiconductor optical amplifier,” in 2016 33rd National Radio Science Conference (NRSC) (2016), pp. 368–376.
[Crossref]

A. Mahmoud, M. Mahmoud, L. Cai, M. S. I. Khan, J. A. Bain, T. Mukherjee, and G. Piazza, “Acousto-optic gyroscope,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018), pp. 241–244.

M. Mahmoud, L. Cai, A. Mahmoud, T. Mukherjee, and G. Piazza, “Electro-optically controlled acousto-optic racetrack modulator etched in LNOI platform,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (2018), pp. 743–746.

A. G. Webster, The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies: Being Lectures on Mathematical Physics (B. G. Teubner, 1912).

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

B. Davaji, V. Pinrod, S. Kulkarni, and A. Lal, “Towards a surface and bulk excited SAW gyroscope,” in 2017 IEEE International Ultrasonics Symposium (IUS) (2017), pp. 1–4.

Y. Musha, M. Hara, H. Asano, and H. Kuwano, “Oscillator based surface acoustic wave gyroscopes,” in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016), pp. 557–560.
[Crossref]

M. Mahmoud, C. Bottenfield, L. Cai, and G. Piazza, “Fully integrated lithium niobate electro-optic modulator based on asymmetric Mach-Zehnder interferometer etched in LNOI platform,” in 2017 IEEE Photonics Conference (IPC) (2017), pp. 223–224.

Z. Luo, X. Wang, M. Jin, and S. Liu, “MEMS gyroscope yield simulation based on Monte Carlo method,” in 2012 IEEE 62nd Electronic Components and Technology Conference (2012), pp. 1636–1639.
[Crossref]

S. Askari, M. H. Asadian, K. Kakavand, and A. M. Shkel, “Vacuum sealed and getter activated MEMS Quad Mass Gyroscope demonstrating better than 1.2 million quality factor,” in 2016 IEEE International Symposium on Inertial Sensors and Systems (2016), pp. 142–143.
[Crossref]

A. Mahmoud, W. Fikry, Y. M. Sabry, and M. A. E. Mahmoud, “Staggered mode MEMS gyroscope,” in 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC) (2016), pp. 103–106.

L. Zhao, W. Li, H. Zhang, Y. Yang, A. Huang, and Z. Xiao, “Improving the scale factor for rotation sensing in a frequency sensitive integrated optical gyroscope,” in (International Society for Optics and Photonics, 2017), Vol. 10244, p. 102440E.

I. P. Prikhodko, S. Nadig, J. A. Gregory, W. A. Clark, and M. W. Judy, “Half-a-month stable 0.2 degree-per-hour mode-matched MEMS gyroscope,” in (IEEE, 2017), pp. 1–4.

E. E. Aktakka, J. K. Woo, and K. Najafi, “On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform,” in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) (2017), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 3D sketch of the AOG (PD = Photo-detector, IDT = Interdigitated transducer). IDT on the sense cavity are not shown to avoid cluttering the drawing, but reflectors are present to point out that a high Q acoustic cavity is also present on the sense side.
Fig. 2
Fig. 2 Phase sensing techniques for the AOG where the secondary acoustic induced due to rotation is sensed as strain variation in the photonic waveguides: (a) The strained waveguides are part of a PP-MZI and (b) The strained waveguides are part of an RT resonator.
Fig. 3
Fig. 3 RT transfer function and its derivative as function of phase. Maximum phase sensitivity is obtained at one quarter of the full width half maximum.
Fig. 4
Fig. 4 GRT as function of r for two values of a. The lower the losses, the more sensitive is the RT. Optimum coupling is found at r= a for maximum phase sensitivity.
Fig. 5
Fig. 5 Layout view of the MZI AOG with zoomed-in SEMs of the various components forming it.
Fig. 6
Fig. 6 Layout view of the RT AOG with zoomed-in SEMs of the various components forming it.
Fig. 7
Fig. 7 (a) Grating Coupler design dimensions. (b) 3-dB MMI coupler design dimensions. (c) Butterfly MMI coupler design dimensions.
Fig. 8
Fig. 8 Fabrication process flow for manufacturing the AOG.
Fig. 9
Fig. 9 Frequency response for the drive and sense cavities showing a mismatch of 40 kHz which is within the resonator bandwidth (100 kHz).
Fig. 10
Fig. 10 (a) Measured insertion loss for the two output ports of the MZI as function of the wavelength.(b) Measured insertion loss for the RT as function of wavelength together with fitting. a, r and F were extracted from the fitting.
Fig. 11
Fig. 11 RT transfer function and its derivative as a function of phase for the actual losses and coupling condition.
Fig. 12
Fig. 12 AOG measurement setup. The optical setup with the positioners and manipulators are mounted on top of the rate table.
Fig. 13
Fig. 13 (a) Measured output voltage as a function of rotation rate together with fitting to extract the scale factor for each AOG. (b) Theoretical comparison between the two photonic sensing techniques. The value of the expected gain factor for the experimentally demonstrated value of r is indicated on the plot.
Fig. 14
Fig. 14 Measured Allan deviation for the zero-rate output of the AOG compared with the experimental results for the same device tested as a SAWG (electro-acoustic read-out instead of acousto-optic).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F c =-2 M p Ω z × v p
S= F c ρ v R 2 LH
Δn= 1 2 n 3 p eff S
SF= T Ω z = T φ AOG φ AOG Ω z =G β AOG
φ AOG =Δn 2π λ L
φ AOG = Q S 2π λ LΔn
v p = P m Q D π f m M r
β AOG = 2π λH M 2 ρ v R M p P m Q D π f m M r Q S
G PPMZI =2
T RT = a 2 + r 2 2arcos( φ ) 1+ a 2 r 2 2arcos( φ )
T RT φ AOG = 2arsinφ( 1+ a 2 r 2 r 2 a 2 ) ( 1+ a 2 r 2 2arcosφ ) 2
G RT = | T RT φ AOG | φ=Δ φ 1/2 /4
G RT 2arΔ φ 1/2 ( 1 a 2 )( 1 r 2 ) 2 ( 1+ a 2 r 2 2ar+ar ( Δ φ 1/2 ) 2 16 ) 2
G RT = 32F 25π 2F 5
S F PPMZI S F RT = G PPMZI G RT = 2 0.7 =2.9

Metrics