Abstract

Metallic nanoparticles (NPs) support localized surface plasmon resonances (LSPRs), which enable to concentrate sunlight at the active layer of solar cells. However, full-wave modeling of the plasmonic solar cells faces great challenges in terms of huge computational workload and bad matrix condition. It is tremendously difficult to accurately and efficiently simulate near-field multiple scattering effects from plasmonic NPs embedded into solar cells. In this work, a preconditioned volume integral equation (VIE) is proposed to model plasmonic organic solar cells (OSCs). The diagonal block preconditioner is applied to different material domains of the device structure. As a result, better convergence and higher computing efficiency are achieved. Moreover, the calculation is further accelerated by two-dimensional periodic Green’s functions. Using the proposed method, the dependences of optical absorption on the wavelengths and incident angles are investigated. Angular responses of the plasmonic OSCs show the super-Lambertian absorption on the plasmon resonance but near-Lambertian absorption off the plasmon resonance. The volumetric method of moments and explored physical understanding are of great help to investigate the optical responses of OSCs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A comprehensive study for the plasmonic thin-film solar cell with periodic structure

Wei E. I. Sha, Wallace C. H. Choy, and Weng Cho Chew
Opt. Express 18(6) 5993-6007 (2010)

Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell

Wenzhen Ren, Guanghui Zhang, Yukun Wu, Huaiyi Ding, Qinghe Shen, Kun Zhang, Junwen Li, Nan Pan, and Xiaoping Wang
Opt. Express 19(27) 26536-26550 (2011)

Design of efficient plasmonic thin-film solar cells based on mode splitting

Tong Li, Lei Dai, and Chun Jiang
J. Opt. Soc. Am. B 28(8) 1793-1797 (2011)

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  2. D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
    [Crossref] [PubMed]
  3. B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
    [Crossref]
  4. Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
    [Crossref]
  5. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
    [Crossref]
  6. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [Crossref] [PubMed]
  7. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [Crossref]
  8. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
    [Crossref]
  9. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
    [Crossref]
  10. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
    [Crossref] [PubMed]
  11. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
    [Crossref]
  12. C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12(7), 1397–1408 (2004).
    [Crossref] [PubMed]
  13. W. E. Sha, W. C. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18(6), 5993–6007 (2010).
    [Crossref] [PubMed]
  14. K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
    [Crossref]
  15. R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
    [Crossref] [PubMed]
  16. S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
    [Crossref]
  17. M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
    [Crossref]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005)
  19. K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
    [Crossref]
  20. M. G. Silveirinha and C. A. Fernandes, “A new acceleration technique with exponential convergence rate to evaluate periodic Green functions,” IEEE Trans. Antenn. Propag. 53(1), 347–355 (2005).
    [Crossref]
  21. P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik IV 369(3), 253–287 (1921).
    [Crossref]
  22. D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
    [Crossref]
  23. Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7(3), 856–869 (1986).
    [Crossref]
  24. W. Y. Wang, Y. Y. Hao, Y. X. Cui, X. M. Tian, Y. Zhang, H. Wang, F. Shi, B. Wei, and W. Huang, “High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices,” Opt. Express 22(S2), A376–A385 (2014).
    [Crossref]
  25. J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3(5), 253–287 (1997).
    [Crossref]
  26. X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
    [Crossref]
  27. F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
    [Crossref]
  28. S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47(6), RS0N06 (2012).
    [Crossref]

2016 (1)

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

2014 (2)

2013 (2)

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

2012 (5)

R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
[Crossref] [PubMed]

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[Crossref] [PubMed]

S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47(6), RS0N06 (2012).
[Crossref]

2011 (3)

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

2010 (3)

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

W. E. Sha, W. C. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18(6), 5993–6007 (2010).
[Crossref] [PubMed]

2008 (1)

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

2007 (2)

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[Crossref] [PubMed]

2005 (1)

M. G. Silveirinha and C. A. Fernandes, “A new acceleration technique with exponential convergence rate to evaluate periodic Green functions,” IEEE Trans. Antenn. Propag. 53(1), 347–355 (2005).
[Crossref]

2004 (1)

1997 (1)

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3(5), 253–287 (1997).
[Crossref]

1993 (1)

M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
[Crossref]

1986 (2)

K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
[Crossref]

Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

1984 (1)

D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
[Crossref]

1921 (1)

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik IV 369(3), 253–287 (1921).
[Crossref]

Abass, A.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[Crossref] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

Alù, A.

Ameloot, M.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Anderson, T. J.

Benedetto, J. J.

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3(5), 253–287 (1997).
[Crossref]

Bermel, P.

Bienstman, P.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[Crossref] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

Campione, S.

S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47(6), RS0N06 (2012).
[Crossref]

Capolino, F.

S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47(6), RS0N06 (2012).
[Crossref]

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

Celepcikay, F. T.

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

Chang, H. C.

Cheng, L.

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

Chew, W. C.

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

W. E. Sha, W. C. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express 18(6), 5993–6007 (2010).
[Crossref] [PubMed]

Cho Chew, W.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Choy, W. C.

Choy, W. C. H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Cui, Y. X.

Ewald, P. P.

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik IV 369(3), 253–287 (1921).
[Crossref]

Fan, S.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Fernandes, C. A.

M. G. Silveirinha and C. A. Fernandes, “A new acceleration technique with exponential convergence rate to evaluate periodic Green functions,” IEEE Trans. Antenn. Propag. 53(1), 347–355 (2005).
[Crossref]

García de Abajo, F. J.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Gilsson, A. W.

D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
[Crossref]

Grimes, C. A.

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Hao, Y. Y.

He, S.

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

Ho, A. H. P.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Huang, W.

Huang, Z. X.

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

Jackson, D. R.

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

Jeyaram, Y.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Jiang, L.

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

Joannopoulos, J. D.

Jordan, K. E.

K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
[Crossref]

Kim, R. S.

Kimerling, L. C.

Kong, J. A.

M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
[Crossref]

Le, K. Q.

Lee, J. Y.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Li, B.

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

Li, J.

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Li, L.

Li, X.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Lin, J.

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

Liu, Y. G.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Liz-Marzán, L. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Lu, H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Lu, J.

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

Luo, C.

Maes, B.

K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012).
[Crossref] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

Metlushko, V.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Min, C.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Mor, G. K.

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Moshchalkov, V. V.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Nie, Z.

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

Obelleiro, F.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Ong, K. G.

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Park, G.

Park, J. H.

Pei, Q.

Peumans, P.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Richter, G. R.

K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
[Crossref]

Saad, Y.

Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Schaubert, D. H.

D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
[Crossref]

Schultz, M. H.

Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Sha, W. E.

Sha, W. E. I.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Shankar, K.

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Shen, H.

R. S. Kim, J. Zhu, J. H. Park, L. Li, Z. Yu, H. Shen, M. Xue, K. L. Wang, G. Park, T. J. Anderson, and Q. Pei, “E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model,” Opt. Express 20(12), 12649–12657 (2012).
[Crossref] [PubMed]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

Sheng, P.

K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
[Crossref]

Shi, F.

Shin, R. T.

M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
[Crossref]

Silhanek, A. V.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha and C. A. Fernandes, “A new acceleration technique with exponential convergence rate to evaluate periodic Green functions,” IEEE Trans. Antenn. Propag. 53(1), 347–355 (2005).
[Crossref]

Solís, D. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Su, X.

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

Taboada, J. M.

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Tian, X. M.

Valev, V. K.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Vandenbosch, G. A. E.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Varghese, O. K.

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Verellen, N.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Veysoglu, M. E.

M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
[Crossref]

Wang, H.

Wang, K. L.

Wang, W. Y.

Wei, B.

Wilton, D. R.

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
[Crossref]

Wu, B.

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

Wu, X.

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

Xue, M.

Yang, P.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yu, C. P.

Yu, Z.

Zeng, L.

Zhang, Y.

Zheng, X.

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

Zhu, J.

Zimmermann, G.

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3(5), 253–287 (1997).
[Crossref]

ACS Nano (1)

D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, and F. J. García de Abajo, “Toward ultimate nanoplasmonics modeling,” ACS Nano 8(8), 7559–7570 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater. 23(21), 2728–2735 (2013).
[Crossref]

Annalen der Physik IV (1)

P. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Annalen der Physik IV 369(3), 253–287 (1921).
[Crossref]

Appl. Phys. Lett. (2)

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. Cho Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic sola,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

IEEE Photonics J. (1)

X. Zheng, V. K. Valev, N. Verellen, Y. Jeyaram, A. V. Silhanek, V. Metlushko, M. Ameloot, G. A. E. Vandenbosch, and V. V. Moshchalkov, “Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies,” IEEE Photonics J. 4(1), 267–282 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. X. Huang, L. Cheng, B. Wu, and X. Wu, “The Study of Optical and Electrical Properties of Solar Cells With Oblique Incidence,” IEEE Photonics Technol. Lett. 28(19), 2047–2049 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

D. H. Schaubert, D. R. Wilton, and A. W. Gilsson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antenn. Propag. 32(1), 77–85 (1984).
[Crossref]

M. G. Silveirinha and C. A. Fernandes, “A new acceleration technique with exponential convergence rate to evaluate periodic Green functions,” IEEE Trans. Antenn. Propag. 53(1), 347–355 (2005).
[Crossref]

IEEE Trans. NanoTechnol. (1)

S. He, W. E. I. Sha, L. Jiang, W. C. H. Choy, W. C. Chew, and Z. Nie, “Finite-Element-Based Generalized Impedance Boundary Condition for Modeling Plasmonic Nanostructures,” IEEE Trans. NanoTechnol. 11(2), 336–345 (2012).
[Crossref]

J. Appl. Phys. (2)

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys. 109(2), 023111 (2011).
[Crossref]

J. Comput. Phys. (1)

K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of the Green’s function for the Helmholtz operator on periodic structures,” J. Comput. Phys. 63(1), 222–235 (1986).
[Crossref]

J. Electromagn. Waves Appl. (1)

M. E. Veysoglu, R. T. Shin, and J. A. Kong, “A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case,” J. Electromagn. Waves Appl. 7(12), 1595–1607 (1993).
[Crossref]

J. Fourier Anal. Appl. (1)

J. J. Benedetto and G. Zimmermann, “Sampling multipliers and the Poisson summation formula,” J. Fourier Anal. Appl. 3(5), 253–287 (1997).
[Crossref]

J. Opt. (1)

B. Li, J. Lin, J. Lu, X. Su, and J. Li, “Light Absorption Enhancement in Thin-Film Solar Cells by Embedded Lossless Silica Nanoparticles,” J. Opt. 15(5), 055005 (2013).
[Crossref]

Nano Lett. (1)

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Radio Sci. (2)

F. T. Celepcikay, D. R. Wilton, D. R. Jackson, and F. Capolino, “Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green’s functions using the Ewald method,” Radio Sci. 43(6), RS6S01 (2008).
[Crossref]

S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47(6), RS0N06 (2012).
[Crossref]

SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. (1)

Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7(3), 856–869 (1986).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, “Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption,” Sol. Energy Mater. Sol. Cells 91(4), 250–257 (2007).
[Crossref]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic of the plasmonic OSC. Periodic silver (Ag) NP array is embedded at the active layer (P3HT:PCBM) of the OSCs. The PEDOT:PSS layer is a spacer layer. The device is illuminated by sunlight with an incident angle of θ. The geometry of the device structure is: The cell size is a × b × D 1 for the PEDOT:PSS domain, a × b × D 2 for the P3HT:PCBM domain and W × W × W for the Ag domain.
Fig. 2
Fig. 2 Residual convergence curves of the GMRES iteration for the plasmonic OSC. The cross and triangle lines are the convergence results for the VIE methods with and without the preconditioners, respectively.
Fig. 3
Fig. 3 Relative errors of the complex current coefficients by the VIE methods with and without the preconditioners.
Fig. 4
Fig. 4 Absorption spectra of the plasmonic solar cell as a function of the lattice constant. The absorption is calculated only from the P3HT:PCBM active material. The arrows denote the resonance peaks. The peaks 1, 2, 3 are related to the excited waveguide mode, transverse plasmonic mode, and longitudinal plasmonic mode. The coupling mechanisms of the transverse mode (peak 2) and longitudinal mode (peak 3) are shown in the inset.
Fig. 5
Fig. 5 Absorption profiles of active layer at the three resonance wavelengths of Fig. 4. The lattice constant is a = 60 nm. (a) λ = 500 nm (peak 1); (b) λ = 600 nm (peak 2); (c) λ = 750 nm (peak 3).
Fig. 6
Fig. 6 Wavelength-dependent angular responses of the plasmonic solar cell. The ideal Lambertian curve is given for comparisons. The 500 nm, 600 nm, and 750 nm correspond to the three resonance wavelengths of Fig. 4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

J v ( r ) j ω ε 0 ( ε r 1 ) + j ω A ( r ) + Φ ( r ) = J V ( r ) j ω ε 0 ( ε r 1 ) + j ω μ 0 V g ( r , r ) J v ( r ) d V 1 j ω ε 0 V g ( r , r ) J v ( r ) d V = E i ( r )
( j ω ) 2 μ 0 v m d v m f m v ( r ) v n κ n ( r ) f n v ( r ) g ( r , r ) d v n + 1 ε 0 v m d v m f m v ( r ) v n κ n ( r ) f n v ( r ) g ( r , r ) d v n 1 ε 0 v m d v m f m v ( r ) v n ( f m v ( r ) κ n ( r ) ) g ( r , r ) d v n 1 ε 0 Ω m f m v ( r ) n d Ω m v n κ n ( r ) f n v ( r ) g ( r , r ) d v n + 1 ε 0 Ω m f m v ( r ) n d Ω m v n ( f m v ( r ) κ n ( r ) ) g ( r , r ) d v n + v m d v m f m v ( r ) 1 ε n ( r ) f m v ( r ) = v m E i ( r ) f m v ( r ) d v m
g p = e j k 0 R m n 4 π R m n e j ( k x i m a + k y i n b )
R m n = ( x x + m a ) 2 + ( y y + n b ) 2 + ( z z ) 2
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] [ x 1 x 2 x 3 ] = [ b 1 b 2 b 3 ]
[ A 11 - 1 A 22 - 1 A 33 - 1 ] [ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] [ x 1 x 2 x 3 ] = [ A 11 - 1 b 1 A 22 - 1 b 2 A 33 - 1 b 3 ] .
A ( λ ) = ω v Im ( ε ( λ , r ) ) | E ( λ , r ) | 2 d v
ε r e = J P r e J N o p r e 2 J N o p r e 2

Metrics