Abstract

The display quality of touchscreen devices with on-screen fingerprint sensors is reduced by moiré patterns, interference phenomena caused by an overlap between the pixel pattern of the display, and the electrode pattern of the fingerprint sensor. A promising strategy for resolving this issue is to reduce the visibility of the moiré pattern, by including a filling layer with a transmittance similar to that of the electrodes, between the different patterns. We propose a moiré-free fingerprint sensor that uses an oxide-metal-oxide (IZO/Ag/IZO) multilayer as a highly transparent electrode. To verify the moiré reduction effect, we conducted a two-dimensional spectral analysis to calculate the spatial frequencies of the superimposed image of the display and the sensor patterns, and demonstrated experimentally that the proposed electrode greatly reduces the undesirable moiré phenomenon.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High performance and low cost transparent electrodes based on ultrathin Cu layer

David Ebner, Martin Bauch, and Theodoros Dimopoulos
Opt. Express 25(8) A240-A252 (2017)

Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

AZO/Ag/AZO transparent conductive films: correlation between the structural, electrical, and optical properties and development of an optical model

Astrid Bingel, Olaf Stenzel, Philipp Naujok, Robert Müller, Svetlana Shestaeva, Martin Steglich, Ulrike Schulz, Norbert Kaiser, and Andreas Tünnermann
Opt. Mater. Express 6(10) 3217-3232 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  2. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
    [Crossref] [PubMed]
  3. F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
    [Crossref] [PubMed]
  4. X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
    [Crossref] [PubMed]
  5. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
    [Crossref] [PubMed]
  6. N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
    [Crossref] [PubMed]
  7. D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
    [Crossref] [PubMed]
  8. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).
    [Crossref]
  9. S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
    [Crossref] [PubMed]
  10. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
    [Crossref] [PubMed]
  11. C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
    [Crossref]
  12. E.-H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
    [Crossref] [PubMed]
  13. E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
    [Crossref] [PubMed]
  14. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
    [Crossref] [PubMed]
  15. Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
    [Crossref] [PubMed]
  16. A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
    [Crossref] [PubMed]
  17. R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
    [Crossref]
  18. D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
    [Crossref]
  19. R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
    [Crossref] [PubMed]
  20. M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
    [Crossref]
  21. D.-K. Shin and J. Park, “Suppression of moiré phenomenon induced by metal grids for touch screen panels,” J. Disp. Technol. 12(6), 632–638 (2016).
    [Crossref]
  22. I. Amidror, The Theory of the Moiré Phenomenon (Springer, 2009).
  23. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  24. S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
    [Crossref]

2018 (1)

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

2016 (3)

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

D.-K. Shin and J. Park, “Suppression of moiré phenomenon induced by metal grids for touch screen panels,” J. Disp. Technol. 12(6), 632–638 (2016).
[Crossref]

2015 (5)

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

E.-H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
[Crossref] [PubMed]

2014 (2)

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

2013 (1)

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

2012 (4)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).
[Crossref]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

2011 (2)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref] [PubMed]

2010 (2)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

2009 (1)

2005 (1)

S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
[Crossref]

2004 (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ahn, J.-H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Alam, M. A.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Borchert, H.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cai, W.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cha, J. J.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cha, S. H.

S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
[Crossref]

Chen, R.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Chen, T. L.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Cheyns, D.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Cho, E.-H.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

E.-H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
[Crossref] [PubMed]

Connor, S. T.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Cui, W.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Cui, Y.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Dai, J.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Das, S. R.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).
[Crossref]

Fang, Z.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Garner, S.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Garnett, E. C.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Ghosh, D. S.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

Giurgola, S.

Greyson Christoforo, M.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Hadipour, A.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Heremans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Hong, B. H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hu, L.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Huang, M.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Hwang, J.

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

Janes, D. B.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Jeong, C.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Khan, M. R.

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, J.

Kim, J. J.

S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
[Crossref]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, M. J.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Kim, T. Y.

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Kim, Y.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Koo, H.-C.

S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
[Crossref]

Kwak, C.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

E.-H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
[Crossref] [PubMed]

Lee, C. S.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

E.-H. Cho, J. Hwang, J. Kim, J. Lee, C. Kwak, and C. S. Lee, “Low-visibility patterning of transparent conductive silver-nanowire films,” Opt. Express 23(20), 26095–26103 (2015).
[Crossref] [PubMed]

Lee, J.

Lee, S.-T.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, F.

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

Liu, K.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, Q.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Liu, Y.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Lu, C. Z.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Ma, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Mahmood, F.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Maniyara, R. A.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

Mantilla-Perez, P.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Martinez, L.

Martorell, J.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

McGehee, M. D.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Mkhitaryan, V.

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

Mkhitaryan, V. K.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

Munday, J. N.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Murray, J.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Niesen, B.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Nowak, R. E.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Oh, K.

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Özyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Parisi, J.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Park, J.

D.-K. Shin and J. Park, “Suppression of moiré phenomenon induced by metal grids for touch screen panels,” J. Disp. Technol. 12(6), 632–638 (2016).
[Crossref]

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Peumans, P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Pournoury, M.

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Preston, C.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Pruneri, V.

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett. 34(3), 325–327 (2009).
[Crossref] [PubMed]

Rand, B. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Rathmell, A. R.

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref] [PubMed]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Scheunemann, D.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Sergeant, N. P.

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

Shin, D.-K.

D.-K. Shin and J. Park, “Suppression of moiré phenomenon induced by metal grids for touch screen panels,” J. Disp. Technol. 12(6), 632–638 (2016).
[Crossref]

Shin, W. H.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Sohn, H.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Song, S.

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

Song, T.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Sorger, V. J.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Sun, B.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Vergani, P.

von Maydell, K.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Wiley, B. J.

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref] [PubMed]

Wilken, S.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Wilkens, V.

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Won, J. Y.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Woo, Y. S.

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Xu, W.

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Xue, D.

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

Ye, C.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Yu, R. M.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Yurlov, V.

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Zamiri, A.

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Zeng, X. Y.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Zhang, H.

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

Zhang, Q. K.

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhu, H.

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (3)

D. S. Ghosh, T. L. Chen, V. Mkhitaryan, and V. Pruneri, “Ultrathin transparent conductive polyimide foil embedding silver nanowires,” ACS Appl. Mater. Interfaces 6(23), 20943–20948 (2014).
[Crossref] [PubMed]

S. Wilken, V. Wilkens, D. Scheunemann, R. E. Nowak, K. von Maydell, J. Parisi, and H. Borchert, “Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes,” ACS Appl. Mater. Interfaces 7(1), 287–300 (2015).
[Crossref] [PubMed]

Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee, and B. Sun, “Solution-processed highly conductive PEDOT:PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells,” ACS Appl. Mater. Interfaces 7(5), 3272–3279 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, and M. A. Alam, “Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes,” Adv. Funct. Mater. 23(41), 5150–5158 (2013).
[Crossref]

D. S. Ghosh, Q. Liu, P. Mantilla-Perez, T. L. Chen, V. Mkhitaryan, M. Huang, S. Garner, J. Martorell, and V. Pruneri, “Highly flexible transparent electrodes containing ultrathin silver for efficient polymer solar cells,” Adv. Funct. Mater. 25(47), 7309–7316 (2015).
[Crossref]

Adv. Mater. (5)

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref] [PubMed]

N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, “Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells,” Adv. Mater. 24(6), 728–732 (2012).
[Crossref] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).
[Crossref] [PubMed]

F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Adv. Mater. 24(8), 1089–1094 (2012).
[Crossref] [PubMed]

X. Y. Zeng, Q. K. Zhang, R. M. Yu, and C. Z. Lu, “A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer,” Adv. Mater. 22(40), 4484–4488 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (1)

D.-K. Shin and J. Park, “Suppression of moiré phenomenon induced by metal grids for touch screen panels,” J. Disp. Technol. 12(6), 632–638 (2016).
[Crossref]

J. Electrochem. Soc. (1)

S. H. Cha, H.-C. Koo, and J. J. Kim, “The inhibition of silver agglomeration by gold activation in silver electroless plating,” J. Electrochem. Soc. 152(6), C388 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, and L. Hu, “Silver nanowire transparent conducting paper-based electrode with high optical haze,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(7), 1248–1254 (2014).
[Crossref]

Nanophotonics (1)

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-tin-oxide for high-performance electro-optic modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Nanoscale (1)

E.-H. Cho, M. J. Kim, H. Sohn, W. H. Shin, J. Y. Won, Y. Kim, C. Kwak, C. S. Lee, and Y. S. Woo, “A graphene mesh as a hybrid electrode for foldable devices,” Nanoscale 10(2), 628–638 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

R. A. Maniyara, V. K. Mkhitaryan, T. L. Chen, D. S. Ghosh, and V. Pruneri, “An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1),” Nat. Commun. 7, 13771 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11(3), 241–249 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 808–816 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

M. Pournoury, A. Zamiri, T. Y. Kim, V. Yurlov, and K. Oh, “Numerical evaluation of moiré pattern in touch sensor module with electrode mesh structure in oblique view,” Proc. SPIE 9770, 97700B (2016).
[Crossref]

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004).
[Crossref] [PubMed]

Other (1)

I. Amidror, The Theory of the Moiré Phenomenon (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) (Left) Assembly of the layers of an on-screen fingerprint sensor. (Right) Electrode pattern of the fingerprint sensor, and the diamond PenTile OLED pixel pattern. (b) Moiré pattern on a smartwatch due to the implementation of an on-screen fingerprint sensor. (c) Moiré pattern on a smartphone due to the implementation of an on-screen fingerprint sensor.
Fig. 2
Fig. 2 (a) Pattern images used in calculation. The RGB image of the OLED pixel array was converted to grayscale and superimposed on an image of the sensor’s electrode array, derived by assuming that the transmittance of the transparent conducting electrodes was ~88%. The pitch of the sensors is 70 µm. Only parts of the arrays are shown, to enable easy visualization of the different patterns. (b) Two-dimensional discrete Fourier transform (2D DFT) of the superimposed image. (c) Result of pattern extraction from the superimposed image.
Fig. 3
Fig. 3 Simulated optical transmittance (solid lines) and reflectance (dotted lines) of (a) 200-nm-thick ITO electrodes, and (b) 40/9/40-nm-thick OMO (IZO/Ag/IZO) electrodes patterned at varying periodicities. The characteristics of a 200-nm-thick SiO2 film, which has a transmittance of 96% and a reflectance of 4% in the entire wavelength band, have been included for comparison.
Fig. 4
Fig. 4 DFT of a 70-µm-pitch diamond-shaped (a) ITO sensor pattern, and (b) OMO sensor pattern, superimposed on the diamond PenTile OLED pixel array of a smartphone, with a 571 ppi resolution.
Fig. 5
Fig. 5 Illustration of major processes in the fabrication of two-layer OMO electrodes: (a) first OMO multilayer after wet etching, (b) organic insulating layer coating, (c) second OMO multilayer after wet etching, and (d) organic passivating layer coating.
Fig. 6
Fig. 6 (a), (b), and (c) Simulated optical transmittance (solid lines) and reflectance (dotted lines) of OMO multilayers, for optimization of optical performance. (d) Calculated sheet resistance of OMO multilayers according to the thickness of each layer. The blue numbers indicate the thickness of the bottom IZO, while the red numbers below the x−axis denote the thickness of the top IZO. In addition, the black circle represents Ag with a thickness of 10 nm and the red circle represents Ag with a thickness of 9 nm.
Fig. 7
Fig. 7 (a) Measured optical transmittance and reflectance of ITO and OMO electrodes. (b) Transmission electron microscopy (TEM) image of the first OMO electrode on the glass substrate. (c) TEM image of the second OMO electrode on the organic insulating layer.
Fig. 8
Fig. 8 Images illustrating the appearance of the moiré phenomenon on a smartphone display with a diamond PenTile pixel structure, with a pixel width of 44.5 µm. (a) Array of two-layer ITO electrodes with varying pitch and period. The moiré patterns are clearly visible as the pattern pitches are in the 88–90 µm range, which is close to twice the width of the display’s pixels. The array was configured such that gaps in the patterns varied in the x direction and pattern periodicity varied in the y direction. While no moiré patterns can be identified visually with the patterns in the red box, as the pattern period is larger than the array area, we observe structural coloration. Arrays of (b) one-layer ITO electrodes and (c) one-layer OMO electrodes designed considering the pattern period and angle that minimized the appearance of the moiré phenomenon. The pictures labelled 1 and 2 illustrate the enlarged moiré patterns highlighted by the corresponding blue boxes. The image at the bottom of Fig. 8(c) illustrates the shapes of the patterns corresponding to the arrays in Figs. 8(b) and 8(c).
Fig. 9
Fig. 9 Images illustrating the appearance of the moiré phenomenon on the smartphone display with an array of (a) two-layer ITO electrodes, and (b) two-layer OMO electrodes, for rotational angles of 0°, 10°, and 16°.
Fig. 10
Fig. 10 Images of a fingerprint sensor fabricated with Mo/OMO electrodes: (a) fingerprint sensor region (Tx and Rx electrodes), (b) electrode contact region, and (c) electrode pad region. (d) Electrical resistances measured following the application of TEG patterns to fingerprint sensors fabricated with Mo/ITO or Mo/OMO electrodes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(u,v)= x=0 N1 y=0 N1 f(x,y)exp[ 2πj(ux+vy) N ] ,

Metrics