Abstract

Laser scanning microscopy is limited in lateral resolution by the diffraction of light. Superresolution methods have been developed since the 90s to overcome this limitation. However superresolution is generally achieved at the expense of a greater complexity (high power lasers, very long acquisition times, specific fluorophores) and limitations on the observable samples. In this paper we propose a method to improve the resolution of confocal microscopy by combining different laser modes and deconvolution. Two images of the same field are acquired with the confocal microscope using different laser modes and used as inputs to a deconvolution algorithm. The two laser modes have different Point Spread Functions and thus provide complementary information leading to an image with enhanced resolution compared to using a single confocal image as input to the same deconvolution algorithm. By changing the laser modes to Bessel-Gauss beams we were able to further improve the efficiency of the deconvolution algorithm and obtain images with a residual Point Spread Function having a width of 0.14 λ (72 nm at a wavelength of 532 nm). This method only requires a laser scanning microscope and is not dependent on certain specific properties of fluorescent proteins. The proposed method requires only a few add-ons to classical confocal or two-photon microscopes and can easily be retrofitted into an existing commercial laser scanning microscope.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging

Harold Dehez, Michel Piché, and Yves De Koninck
Opt. Express 21(13) 15912-15925 (2013)

Image scanning microscopy with a quadrant detector

Marco Castello, Colin J. R. Sheppard, Alberto Diaspro, and Giuseppe Vicidomini
Opt. Lett. 40(22) 5355-5358 (2015)

Deconvolution methods for structured illumination microscopy

Nadya Chakrova, Bernd Rieger, and Sjoerd Stallinga
J. Opt. Soc. Am. A 33(7) B12-B20 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S.W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  2. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  3. M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  4. M.G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  5. C.B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref] [PubMed]
  6. C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
    [Crossref]
  7. H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21(13), 15912–15925 (2013).
    [Crossref] [PubMed]
  8. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref] [PubMed]
  9. K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
    [Crossref] [PubMed]
  10. A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
    [Crossref] [PubMed]
  11. J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
    [Crossref]
  12. L.M. Mugnier, C. Robert, J.M. Conan, V. Michau, and S. Salem, “Myopic deconvolution from wave-front sensing,” J. Opt. Soc. Am. A 18(4), 862–872 (2001).
    [Crossref]
  13. L.M. Mugnier, T. Fusco, and J. Conan, “Mistral: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images,” J. Opt. Soc. Am. A 21(10), 1841–1854 (2004).
    [Crossref]
  14. F. Soulez, “Une approche problèmes inverses pour la reconstruction de données multi-dimensionnelles par méthodes d’optimisation,” PhD thesis, Université Jean Monnet - Saint-Etienne (2008).
  15. E.F.Y. Hom, F. Marchis, T.K. Lee, S. Haase, D.A. Agard, and J.W. Sedat, “Aida: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data,” J. Opt. Soc. Am. A 24(6), 1580–1600 (2007).
    [Crossref]
  16. F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.
  17. N. Wiener, The Interpolation, Extrapolation and Smoothing of Stationary Time Series, (J. Wiley and Sons, 1949).
  18. E. Thiébaut, “Introduction to image reconstruction and inverse problems,” in Optics in Astrophysics, R. Foy and F. Foy, eds. (Springer, NATO Science Series II: Mathematics, Physics and Chemistry, vol 198), 397–423 (2005).
    [Crossref]
  19. F. Orieux, “Inversion bayésienne myope et non-supervisée pour l’imagerie sur-résolue. Application à l’instrument SPIRE de l’observatoire spatial Herschel,” PhD thesis, Université Paris-sud 11 - Paris (2009).
  20. J. Nocedal and S.J. Wright, “Conjugate Gradient Methods,” in Numerical Optimization, (SpringerSeries in Operations Research, 1999), pp. 100–133.
    [Crossref]
  21. E. Thiebaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, 174–183 (2002).
    [Crossref]
  22. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
    [Crossref]
  23. L. Novotny and B. Hecht, “Propagation and focusing of optical fields,” in Principles of Nano-Optics, (Cambridge University, 2006), pp. 45–88.
    [Crossref]
  24. Arcoptix Switzerland, “Radial/aximuthal polarisation converter,” < http://www.arcoptix.com/radial_polarization_converter.htm .
  25. B.E.A. Saleh and M.C. Teich, “Beam Optics,” in Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics. Wiley Online, 2001), pp. 80–107.
  26. P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
    [Crossref] [PubMed]
  27. G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
    [Crossref] [PubMed]
  28. S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
    [Crossref]
  29. T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
    [Crossref] [PubMed]
  30. K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
    [Crossref]
  31. H. Dehez, A. April, and M. Piché, “Needles of longitudinally polarized light: guidelines for minimum spot size and tunable axial extent,” Opt. Express 20(14), 14891–14905 (2012).
    [Crossref] [PubMed]
  32. L. Thibon, L. E. Lorenzo, M. Piché, and Y. De Koninck, “Resolution enhancement in confocal microscopy using Bessel-Gauss beams,” Opt. Express 25(3), 2162–2177 (2017).
    [Crossref]
  33. Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3(11), 2162–2177 (1986).
    [Crossref]
  34. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
    [Crossref]
  35. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
    [Crossref]
  36. J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).
  37. Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
    [Crossref] [PubMed]
  38. E. Sezgin, “Super-resolution optical microscopy for studying membrane structure and dynamics,” J. Phys.: Condens. Matter 29(27), 273001 (2017).
  39. M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
    [Crossref] [PubMed]
  40. J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
    [Crossref]
  41. G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
    [Crossref] [PubMed]
  42. J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).
  43. E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
    [Crossref]
  44. P.A. Pellett, X. Sun, T.J. Gould, J.E. Rothman, M.Q. Xu, I.R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express 2(8), 2364–2371 (2011).
    [Crossref] [PubMed]
  45. F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
    [Crossref] [PubMed]
  46. T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
    [Crossref] [PubMed]
  47. E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
    [Crossref] [PubMed]
  48. O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
    [Crossref] [PubMed]

2017 (4)

E. Sezgin, “Super-resolution optical microscopy for studying membrane structure and dynamics,” J. Phys.: Condens. Matter 29(27), 273001 (2017).

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

L. Thibon, L. E. Lorenzo, M. Piché, and Y. De Koninck, “Resolution enhancement in confocal microscopy using Bessel-Gauss beams,” Opt. Express 25(3), 2162–2177 (2017).
[Crossref]

C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
[Crossref]

2016 (3)

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (3)

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

2013 (5)

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

G. Thériault, Y. De Koninck, and N. McCarthy, “Extended depth of field microscopy for rapid volumetric two-photon imaging,” Opt. Express 21(8), 10095–10104 (2013).
[Crossref] [PubMed]

H. Dehez, M. Piché, and Y. De Koninck, “Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging,” Opt. Express 21(13), 15912–15925 (2013).
[Crossref] [PubMed]

A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (7)

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).

P.A. Pellett, X. Sun, T.J. Gould, J.E. Rothman, M.Q. Xu, I.R. Corrêa, and J. Bewersdorf, “Two-color STED microscopy in living cells,” Biomed. Opt. Express 2(8), 2364–2371 (2011).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

2010 (1)

C.B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

2007 (2)

2006 (3)

P. Dufour, M. Piché, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45(36), 9246–9252 (2006).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

2005 (1)

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (2)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
[Crossref]

E. Thiebaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, 174–183 (2002).
[Crossref]

2001 (1)

2000 (1)

M.G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1994 (1)

1986 (1)

Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3(11), 2162–2177 (1986).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Agard, D.A.

Anbarasanc, P.M.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Antipov, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

April, A.

Back, S.

J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).

Bates, M.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Betzig, E.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bewersdorf, J.

Bianchini, P.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Bock, H.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Bonifacino, J.S.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bunt, G.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Butkevich, A.N.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

Carlini, L.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Clever, M.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Conan, J.

Conan, J.M.

Corrêa, I.R.

Côté, D.

Danzl, J.G.

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

Daradich, A.

Davidson, M.W

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Davidson, M.W.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Koninck, Y.

Dehez, H.

Denis, L.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.

Diaspro, A.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Dobbie, I.M.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Dufour, P.

Eggeling, C.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Enderlein, J.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

C.B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Engelhardt, J.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Fusco, T.

Galbraith, C.G.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Galbraith, J.A.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Gao, L.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Gasecka, A.

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Göhler, A.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Gokulakrishnanb, K.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Gould, T.J.

Gregor, C.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

Großhans, J.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Grotjohann, T.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Gustafsson, M.G.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

M.G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Haase, S.

Han, K.Y.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Hashimoto, N.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, “Propagation and focusing of optical fields,” in Principles of Nano-Optics, (Cambridge University, 2006), pp. 45–88.
[Crossref]

Hegedus, Z. S.

Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3(11), 2162–2177 (1986).
[Crossref]

Hell, S.W.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

S.W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Hes, H.F.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hibi, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Holden, S.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Hom, E.F.Y.

Horanai, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Ilgen, P.

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

Ipponjima, S.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Jakobs, S.

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

Jesacher, A.

Johansson, G.A.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Kamps-Hughes, N.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Kaufmann, R.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Kehlenbach, R.H.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Kim, D.

J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).

Kim, J.

J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).

Kirshner, H.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Korobchevskaya, K.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Kozawa, Y.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
[Crossref]

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Kurihara, M.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Lagerholm, B.C.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Lavoie-Cardinal, F.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Lee, T.K.

Leutenegger, M.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Li, Z.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Lindwasser, O.W.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Loidolt, M.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

Lorenzo, L. E.

Macklin, J.J.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Mahadevand, G.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Manley, S.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Marchis, F.

McCarthy, N.

Michau, V.

Milkie, D.E.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Min, J.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Moneron, G.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Mugnier, L.M.

Müller, C.B.

C.B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Murtagh, F.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
[Crossref]

Nemoto, T.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Nocedal, J.

J. Nocedal and S.J. Wright, “Conjugate Gradient Methods,” in Numerical Optimization, (SpringerSeries in Operations Research, 1999), pp. 100–133.
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, “Propagation and focusing of optical fields,” in Principles of Nano-Optics, (Cambridge University, 2006), pp. 45–88.
[Crossref]

Olenych, S.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Olivier, N.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Orieux, F.

F. Orieux, “Inversion bayésienne myope et non-supervisée pour l’imagerie sur-résolue. Application à l’instrument SPIRE de l’observatoire spatial Herschel,” PhD thesis, Université Paris-sud 11 - Paris (2009).

Pantin, E.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
[Crossref]

Patterson, G.H.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pellett, P.A.

Peres, C.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Pfaff, J.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Piché, M.

Pieper, C.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Piestun, R.

Planchon, T.A.

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

Rajesha, K.B.

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Rego, E.H.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Reuss, M.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Robert, C.

Roider, C.

Rothman, J.E.

Ruhlandt, A.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Rust, M.J.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Sahl, S.J.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

Saleh, B.E.A.

B.E.A. Saleh and M.C. Teich, “Beam Optics,” in Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics. Wiley Online, 2001), pp. 80–107.

Salem, S.

Sarafis, V.

Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3(11), 2162–2177 (1986).
[Crossref]

Sato, A.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Sato, S.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24(6), 1793–1798 (2007).
[Crossref]

Schulz, O.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Sedat, J.W.

Sezgin, E.

E. Sezgin, “Super-resolution optical microscopy for studying membrane structure and dynamics,” J. Phys.: Condens. Matter 29(27), 273001 (2017).

Shao, L.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Sheppard, C.J.R.

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

Sidenstein, S.C.

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

Sougrat, R.

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Soulez, F.

F. Soulez, “Une approche problèmes inverses pour la reconstruction de données multi-dimensionnelles par méthodes d’optimisation,” PhD thesis, Université Jean Monnet - Saint-Etienne (2008).

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.

Starck, J. L.

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
[Crossref]

Sun, X.

Sureshb, N. Veerabagu

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Ta, H.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Teich, M.C.

B.E.A. Saleh and M.C. Teich, “Beam Optics,” in Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics. Wiley Online, 2001), pp. 80–107.

Testa, I.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Thériault, G.

Thibon, L.

Thiebaut, E.

E. Thiebaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, 174–183 (2002).
[Crossref]

Thiébaut, E.

E. Thiébaut, “Introduction to image reconstruction and inverse problems,” in Optics in Astrophysics, R. Foy and F. Foy, eds. (Springer, NATO Science Series II: Mathematics, Physics and Chemistry, vol 198), 397–423 (2005).
[Crossref]

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.

Tourneur, Y.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.

Unser, M.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Uphoff, S.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Urban, N.T.

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Vicidomini, G.

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Vonesch, C.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Wainman, A.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Wegel, E.

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

Westphal, V.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Wichmann, J.

Wiener, N.

N. Wiener, The Interpolation, Extrapolation and Smoothing of Stationary Time Series, (J. Wiley and Sons, 1949).

Willig, K.I.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Winoto, L.

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Winter, F.R.

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Wouters, F.S.

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Wright, S.J.

J. Nocedal and S.J. Wright, “Conjugate Gradient Methods,” in Numerical Optimization, (SpringerSeries in Operations Research, 1999), pp. 100–133.
[Crossref]

Xu, M.Q.

Ye, J.C.

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

Yokoyama, H.

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 72(6), 15947–15954 (2011).
[Crossref]

Zhuang, X.

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Microsc. (1)

M.G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (5)

J. Phys.: Condens. Matter (1)

E. Sezgin, “Super-resolution optical microscopy for studying membrane structure and dynamics,” J. Phys.: Condens. Matter 29(27), 273001 (2017).

Microsc. Res. Tech. (1)

J. Kim, D. Kim, and S. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech. 19(17), 441–446 (2011).

Microscopy (1)

S. Ipponjima, T. Hibi, Y. Kozawa, H. Horanai, H. Yokoyama, S. Sato, and T. Nemoto, “Improvement of lateral resolution and extension of depth of field in two-photon microscopy by a higher-order radially polarized beam,” Microscopy 63(1), 23–32 (2014).
[Crossref]

Nat. Methods (3)

T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–426 (2011).
[Crossref] [PubMed]

M.J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J.G. Danzl, S.C. Sidenstein, C. Gregor, N.T. Urban, P. Ilgen, S. Jakobs, and S.W. Hell, “Coordinate-targeted fluorescence nanoscopy with multiple off states,” Nat. Photonics 10, 122–128 (2016).
[Crossref]

Nature (1)

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N.T. Urban, F. Lavoie-Cardinal, K.I. Willig, C. Eggeling, S. Jakobs, and S.W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Laser Technol. (1)

K.B. Rajesha, N. Veerabagu Sureshb, P.M. Anbarasanc, K. Gokulakrishnanb, and G. Mahadevand, “Tight focusing of double ring shaped radially polarized beam with high NA lens axicon,” Opt. Laser Technol. 43(7), 1037–1040 (2011).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

C.B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

M. Hofmann, C. Eggeling, S. Jakobs, and S.W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102(49), 17565–17569 (2005).
[Crossref] [PubMed]

E.H. Rego, L. Shao, J.J. Macklin, L. Winoto, G.A. Johansson, N. Kamps-Hughes, M.W Davidson, and M.G. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109(3), E135–E143 (2014).
[Crossref]

Proc. Natl. Acad. Sci. USA. (1)

O. Schulz, C. Pieper, M. Clever, J. Pfaff, A. Ruhlandt, R.H. Kehlenbach, F.S. Wouters, J. Großhans, G. Bunt, and J. Enderlein, “Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy,” Proc. Natl. Acad. Sci. USA. 110(52), 21000–21005 (2013).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253(1274), 358–379 (1959).
[Crossref]

Proc. SPIE (1)

E. Thiebaut, “Optimization issues in blind deconvolution algorithms,” Proc. SPIE 4847, 174–183 (2002).
[Crossref]

Publ. Astron. Soc. Pac. (1)

J. L. Starck, E. Pantin, and F. Murtagh, “Deconvolution in astronomy: a review,” Publ. Astron. Soc. Pac. 117(800), 1051–1069 (2002).
[Crossref]

Sci. Rep. (5)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

K. Korobchevskaya, C. Peres, Z. Li, A. Antipov, C.J.R. Sheppard, A. Diaspro, and P. Bianchini, “Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement,” Sci. Rep. 6, 25816 (2016).
[Crossref] [PubMed]

J. Min, C. Vonesch, H. Kirshner, L. Carlini, N. Olivier, S. Holden, S. Manley, J.C. Ye, and M. Unser, “FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data,” Sci. Rep. 4, 4577 (2014).

E. Wegel, A. Göhler, B.C. Lagerholm, A. Wainman, S. Uphoff, R. Kaufmann, and I.M. Dobbie, “Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison,” Sci. Rep. 6, 27290 (2016).
[Crossref] [PubMed]

F.R. Winter, M. Loidolt, V. Westphal, A.N. Butkevich, C. Gregor, S.J. Sahl, and S.W. Hell, “Multicolour nanoscopy of fixed and living cells with a single STED beam and hyperspectral detection,” Sci. Rep. 7, 46492 (2017).
[Crossref] [PubMed]

Science (1)

E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H.F. Hes, “Imaging intracellular fluorescent proteins at nano-meter resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (9)

F. Soulez, “Une approche problèmes inverses pour la reconstruction de données multi-dimensionnelles par méthodes d’optimisation,” PhD thesis, Université Jean Monnet - Saint-Etienne (2008).

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in Proceedings of IEEE International Symposium on Biomedical Imaging (IEEE, 2012), 1735–1738.

N. Wiener, The Interpolation, Extrapolation and Smoothing of Stationary Time Series, (J. Wiley and Sons, 1949).

E. Thiébaut, “Introduction to image reconstruction and inverse problems,” in Optics in Astrophysics, R. Foy and F. Foy, eds. (Springer, NATO Science Series II: Mathematics, Physics and Chemistry, vol 198), 397–423 (2005).
[Crossref]

F. Orieux, “Inversion bayésienne myope et non-supervisée pour l’imagerie sur-résolue. Application à l’instrument SPIRE de l’observatoire spatial Herschel,” PhD thesis, Université Paris-sud 11 - Paris (2009).

J. Nocedal and S.J. Wright, “Conjugate Gradient Methods,” in Numerical Optimization, (SpringerSeries in Operations Research, 1999), pp. 100–133.
[Crossref]

L. Novotny and B. Hecht, “Propagation and focusing of optical fields,” in Principles of Nano-Optics, (Cambridge University, 2006), pp. 45–88.
[Crossref]

Arcoptix Switzerland, “Radial/aximuthal polarisation converter,” < http://www.arcoptix.com/radial_polarization_converter.htm .

B.E.A. Saleh and M.C. Teich, “Beam Optics,” in Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics. Wiley Online, 2001), pp. 80–107.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Intensity distribution of the two laser modes. (a) The TEM00 vertically polarized Gaussian beam. (b) The TE01 azimuthally polarized Gaussian beam (donut mode). Pixel size: 10 nm. Scale bar: 100 nm.
Fig. 2
Fig. 2 (a) MTF of the TEM00 beam. (b) MTF of the TE01 beam. (c) Both TEM00 and TE01 MTFs are displayed on the same image; the TEM00 MTF is colored in red and the TE01 MTF in green. The yellow color indicates that the two MTFs overlap. The center of each image corresponds to the zero frequency and frequency increases radially. λ = 532 nm. The image brightness was adjusted for better visualisation. (d) and (e) are the horizontal and vertical profiles of the MTFs displayed in (c).
Fig. 3
Fig. 3 Simulated confocal images obtained by the convolution of samples of point-like objects (1 pixel in size) with the corresponding PSFs. The objects are described in the text. (a) Image obtained with the Gaussian vertically polarized TEM00 PSF. (b) Image obtained with the TE01 azimuthally polarized PSF. Pixel size: 10 nm. Scale bar: 500 nm.
Fig. 4
Fig. 4 Results of the Wiener filtering deconvolution on the images taken with the TEM00 mode (a) and with the TE01 mode (a). In (c) one finds the profiles of the coloured traces on the images in (a) (trace in blue) and (b) (trace in red). λ = 532 nm. Scale bar: 500 nm.
Fig. 5
Fig. 5 (a) In red are the frequency components present in the Wiener filtered image taken with the TE01 beam that are not present in the Wiener filtered image taken with the TEM00 beam, which is represented in green. (b) total frequency content of the Wiener filtered image taken with the TE01 mode in red and with the TEM00 mode in green. The yellow color indicates that the two MTFs overlap. The center of each image corresponds to the zero frequency and frequency increases radially. The contrast has been modified for a better visibility.
Fig. 6
Fig. 6 Deconvolution results compared to those obtained with single image confocal microscopy and SLAM for four point-like objects separated by 30 pixels (300 nm). The four points of the original (undistorted) image are too small to be visible on an image (each point is only of one pixel size). Quad. deconv. refers to deconvolution with quadratic (Tikhonov) regularization. Non-quad. deconv. refers to deconvolution with non-quadratic regularization (edge preserving). TEM00 refers to the PSF of the vertically polarized Gaussian beam and TE01 to the PSF of the azimuthally polarized TE01 beam. TEM00 & TE01 specifies that the two-image deconvolution method is used. Scale bar: 200 nm.
Fig. 7
Fig. 7 Profiles corresponding to the red lines in Fig. 6. The original points are presented in grey. Quad. deconv. refers to deconvolution with quadratic (Tikhonov) regularization. Non-quad. deconv. refers to deconvolution with non-quadratic regularization (edge preserving). TEM00 & TE01 specifies that the two-image deconvolution method is used.
Fig. 8
Fig. 8 Comparison of the proposed deconvolution method with SLAM on randomly simulated lines having a width of one pixel. (a) Comparison of confocal, SLAM and deconvolution with the original simulated image. Scale bar: 1 µm. (b) Profiles of the two traces drawn in (a) compare the methods.
Fig. 9
Fig. 9 Schematic representation of a home-made confocal system. In the laser module we used two beam splitters creating two separate optical paths to easily switch between the TEM00 and the TE01 beams. The azimuthally polarized TE01 beam is created by means of an Arcoptix radial/azimuthal polarization converter [24]. ND filters stands for neutral density filters.
Fig. 10
Fig. 10 Experimental comparison of the methods using imaging of nano-spheres. (a) Classical confocal. (b) SLAM. (c) Two-image deconvolution with edge preserving regularization. Scale bar: 1µm.
Fig. 11
Fig. 11 Profiles obtained from the images shown in Fig. 10. Red: confocal. Green: SLAM. Blue: two-image deconvolution with edge preserving regularization.
Fig. 12
Fig. 12 (a) Comparison of confocal, SLAM and deconvolution methods on images of the same field. Scale bar : 1 µm. (b) Integrated profiles along the 10-pixel wide lines in (a). Black: confocal. Green: SLAM. Blue: single-image deconvolution. Red: two-image deconvolution. The deconvolution method used the edge preserving regularization.
Fig. 13
Fig. 13 (a) Comparison of confocal, SLAM and deconvolution methods on images of the same field. (b) Profiles of the traces in (a). Black: confocal. Green: SLAM. Blue: single-image deconvolution. Red: two-image deconvolution. The deconvolution method used is the one based on edge preserving regularization.
Fig. 14
Fig. 14 100 nm fluorescent nano-spheres (Fluosphere carboxylate-modified microspheres, orange fluorescence 540/560) observed on a confocal microscope with a pinhole of 15µm. Excitation wavelength: 532 nm. Scale bar: 300 nm. The nano-spheres are observed with Gaussian and Bessel-Gauss beams with vertical or azimuthal polarization, respectively.
Fig. 15
Fig. 15 Deconvolution results compared to confocal and SLAM for four points disposed on a square and separated by 30 pixels (300 nm). Original images are not presented because the four points are too small to be visible on an image (each point is only of one pixel size). Non-quad. deconv. refers to deconvolution with non-quadratic regularization (edge preserving). Scale bar: 200 nm.
Fig. 16
Fig. 16 Profile traces corresponding to the red lines in Fig. 15 comparing the results obtained with the two deconvolution methods. The original points are presented in grey.
Fig. 17
Fig. 17 Comparison of images of the same objects obtained with confocal microscopy and deconvolution methods. Left: classical confocal with the TEM00 beam. Middle: two-image deconvolution with the TEM00 and TE01 beams. Right: two-image deconvolution with the Bessel-Gauss beams of order 0 and 1. Scale bar: 340 nm.
Fig. 18
Fig. 18 Profile trace of the image shown in Fig. 17. Black: confocal. Red: two-image deconvolution with Gaussian and Laguerre-Gauss beams. Purple: two-image deconvolution with Bessel-Gauss beams of order 0 and 1.
Fig. 19
Fig. 19 (a) Confocal image of microtubules with the Bessel-Gauss beam of order 0 (top) and two-image deconvolution with Bessel-Gauss beams of order 0 and 1 (bottom). (a) Profile traces of the images in (a). Scale bar: 1µm.

Tables (2)

Tables Icon

Table 1 Residual full width at half maximum (FWHM) of the point like object for each tested method in both directions (vertical and horizontal). Numerical values are extracted from the datasets presented in Figs. 6 and 7. All computations are for a wavelength of 532 nm.

Tables Icon

Table 2 Residual full width at half maximum (FWHM) of the point like objects for each tested method in both directions (vertical and horizontal). Calculations were made with the datasets presented in Figs. 15 and 16. All calculations are made assuming a wavelength of 532 nm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I m g S L A M = I m g b r i g t h g * I m g d o n u t
y ( k ) = h ( k ) * x ( k ) + n ( k ) ,
f W i e n e r = a r g m i n f E { x W i e n e r x T r u e 2 } ,
f W i e n e r = a r g m i n f E { f * y x T r u e 2 } ,
a r g m i n f φ ( f )
f ^ u W i e n e r = h ^ u * | h ^ u | 2 + α u β ;
ϕ M A P ( x ) = ϕ M L ( x ) + ϕ p r i o ( x ) ,
ϕ M L ( x ) = ( H x y ) T W ( H x y )
ϕ p r i o ( x ) = μ D x 2 ,
ϕ p r i o ( x ) = μ i , j [ x i + 1 , j x i , j ] 2 + μ i , j [ x i , j + 1 x i , j ] 2 ,
Δ ϕ M A P ( x ) = 0 ,
H T W H x + μ D T D x = H T W y .
ϕ p r i o ( x ) = λ 0 r [ x ^ ( r ) θ r ln ( 1 + x ^ ( r ) θ r ) ] ,
ϕ M A P ( x ) = ϕ M L 1 ( x ) + ϕ M L 2 ( x ) + ϕ p r i o ( x ) ,
ϕ M L 1 ( x ) = ( H 1 x y 1 ) T W ( H 1 x y 1 ) ,
ϕ M L 2 ( x ) = ( H 2 x y 2 ) T W ( H 2 x y 2 ) ,

Metrics