Abstract

In this paper, an ultrahigh sensitivity sensing in aqueous solution for microfiber modal interferometer (MMI) is realized. The group refractive index (RI) difference between HE11 and HE12 mode will come down to 0 at a certain wavelength, resulting in ultrahigh sensitivity near this wavelength. MMI with different diameters have their individual ultrasensitive wavelength band, which indicates the broad range of optional probing wavelength and more liberal diameter condition on fiber fabrication. In the experimentation, infrared absorption band in water around 1360-1600nm is easy to keep away by adjusting the microfiber diameter. As a result, an ultrahigh sensitivity of 14.95 pm/ppm is realized for sodium nitrate at 1320nm, whose equivalent sensitivity is about 1.26 × 105-nm/RIU for RI, which is much higher than most of the existing naked sensors with magnitude of 102-104nm/RIU.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point

Nancy Meng Ying Zhang, Kaiwei Li, Nan Zhang, Yu Zheng, Ting Zhang, Miao Qi, Ping Shum, and Lei Wei
Opt. Express 26(22) 29148-29158 (2018)

Modeling optical microfiber loops for seawater sensing

Shanshan Wang, Jing Wang, Guoxiang Li, and Limin Tong
Appl. Opt. 51(15) 3017-3023 (2012)

Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating

Yu Zhang, Bo Lin, Swee Chuan Tjin, Han Zhang, Guanghui Wang, Ping Shum, and Xinliang Zhang
Opt. Express 18(25) 26345-26350 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  2. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  3. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [Crossref] [PubMed]
  4. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. St. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett. 30(15), 1980–1982 (2005).
    [Crossref] [PubMed]
  5. Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
    [Crossref] [PubMed]
  6. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  7. Z. Xu, Y. Luo, Q. Sun, C. Mou, Y. Li, P. P. Shum, and D. Liu, “Light velocity control in monolithic microfiber bridged ring resonator,” Optica 4(8), 945–950 (2017).
    [Crossref]
  8. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
    [Crossref]
  9. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
    [Crossref] [PubMed]
  10. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [Crossref] [PubMed]
  11. H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
    [Crossref] [PubMed]
  12. J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
    [Crossref]
  13. P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
    [Crossref]
  14. F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon mach-zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
    [Crossref] [PubMed]
  15. J. O. Trevisanutto, A. Linhananta, and G. Das, “Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber,” Opt. Lett. 41(24), 5789–5792 (2016).
    [Crossref] [PubMed]
  16. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  17. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  18. L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
    [Crossref]
  19. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [Crossref] [PubMed]
  20. F. K. Fatemi, J. E. Hoffman, P. Solano, E. F. Fenton, G. Beadie, S. L. Rolston, and L. A. Orozco, “Modal interference in optical nanofibers for sub-Angstrom radius sensitivity,” Optica 4(1), 157–162 (2017).
    [Crossref]
  21. Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
    [Crossref] [PubMed]
  22. F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Opt. Express 22(10), 12645–12652 (2014).
    [Crossref] [PubMed]
  23. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
    [Crossref]
  24. Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
    [Crossref]
  25. K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
    [Crossref]
  26. Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
    [Crossref]
  27. T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
    [Crossref] [PubMed]
  28. Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
    [Crossref]
  29. S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
    [Crossref]
  30. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
    [Crossref]
  31. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [Crossref]
  32. T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
    [Crossref] [PubMed]
  33. I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
    [Crossref]
  34. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref] [PubMed]
  35. X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468–471 (2015).
    [Crossref]
  36. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
    [Crossref]
  37. Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
    [Crossref] [PubMed]
  38. B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
    [Crossref] [PubMed]
  39. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).
  40. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
    [Crossref]
  41. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
    [Crossref]
  42. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  43. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  44. A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
    [Crossref]
  45. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref] [PubMed]
  46. World Health Organization, “Guidelines for drinking-water quality,” http://www.who.int/water_sanitation_health/publications/gdwq4-with-add1-chap8.pdf?ua=1 .
  47. S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
    [Crossref] [PubMed]
  48. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974).

2017 (4)

Z. Xu, Y. Luo, Q. Sun, C. Mou, Y. Li, P. P. Shum, and D. Liu, “Light velocity control in monolithic microfiber bridged ring resonator,” Optica 4(8), 945–950 (2017).
[Crossref]

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

F. K. Fatemi, J. E. Hoffman, P. Solano, E. F. Fenton, G. Beadie, S. L. Rolston, and L. A. Orozco, “Modal interference in optical nanofibers for sub-Angstrom radius sensitivity,” Optica 4(1), 157–162 (2017).
[Crossref]

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

2016 (8)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

J. O. Trevisanutto, A. Linhananta, and G. Das, “Plasmonic structure: fiber grating formed by gold nanorods on a tapered fiber,” Opt. Lett. 41(24), 5789–5792 (2016).
[Crossref] [PubMed]

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (4)

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Opt. Express 22(10), 12645–12652 (2014).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

2012 (5)

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

2011 (2)

2009 (1)

H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
[Crossref] [PubMed]

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (3)

2004 (3)

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

1970 (1)

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[Crossref]

1965 (1)

Ahmad, H.

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Aryanfar, I.

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bartelt, H.

Beadie, G.

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Brambilla, G.

Bui, H.

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Cao, Q.

Chang, Y. L.

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, F.

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

Chen, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
[Crossref] [PubMed]

Cheng, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Cheong, Y. K.

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

Chong, W. Y.

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Cordeiro, C. M. B.

Das, G.

Dellith, J.

DiGiovanni, D. J.

Ding, M.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

Ding, W.

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

Dulashko, Y.

Fang, L.

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Fatemi, F. K.

Fenton, E. F.

Finazzi, V.

Fini, J. M.

Foster, M.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Gaeta, A.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Gan, X.

Gao, F.

Gao, S.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gong, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Gorbach, A. V.

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gu, F.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon mach-zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Guan, B. O.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref] [PubMed]

Guo, T.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

Guo, Z. N.

Hale, A.

Han, L.

Harun, S. W.

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Hoffman, J. E.

Hsieh, Y. W.

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Hu, H.

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

Jiang, X. F.

Jin, L.

Jung, Y.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Le, H. T.

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Lei, H.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

Li, B.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
[Crossref] [PubMed]

Li, G.

Li, H.

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

Li, J.

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref] [PubMed]

Li, K.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Li, L.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Y.

Liao, Y.

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

Lim, K. S.

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

Lin, W.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Linhananta, A.

Liu, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Liu, D.

Liu, G.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Liu, H.

Liu, M.

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Lu, X. Y.

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Lu, Y. Q.

Luo, A. P.

Luo, H.

Luo, Y.

Luo, Z. C.

Main, P.

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

Malitson, I. H.

Mao, D.

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Monzón-Hernández, D.

Mosley, P. J.

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

Mou, C.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Orozco, L. A.

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Pham, T. B.

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Pham, V. H.

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Quan, Z.

Ran, Y.

Rao, Y. J.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Richardson, D.

Richardson, D. J.

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Rolston, S. L.

Russell, P. St. J.

Schmidt, M. A.

Schwelb, O.

Sengers, J. M. H. L.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Sheng, C.

Shum, P. P.

Snyder, A. W.

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[Crossref]

Solano, P.

Song, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

Sumetsky, M.

Sun, L. P.

Sun, Q.

Talkenberg, F.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tian, Z.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Trebino, R.

Trevisanutto, J. O.

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Villatoro, J.

Wadsworth, W. J.

Wang, A. B.

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, J.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

Wang, L. A.

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

Wang, S.

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

S. Wang, J. Wang, G. Li, and L. Tong, “Modeling optical microfiber loops for seawater sensing,” Appl. Opt. 51(15), 3017–3023 (2012).
[Crossref] [PubMed]

Wang, X.

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

Wang, Y.

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468–471 (2015).
[Crossref]

H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
[Crossref] [PubMed]

Wang, Z.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Wei, L.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Wieduwilt, T.

Wu, G.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon mach-zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

Wu, J.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Wu, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xin, H.

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

Xu, F.

Xu, W. C.

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xu, Z.

Yan, Z.

Yang, H.

Y. Liao, J. Wang, S. Wang, H. Yang, and X. Wang, “Simultaneous measurement for seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Lightwave Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

Yao, B.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Yin, X.

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Yu, B.

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

Yu, X. F.

Zeng, H.

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon mach-zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

Zhang, A.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Zhang, H.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

Zhang, L.

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, N.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, T.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhao, C.

Zhao, C. J.

Zhao, J.

Zhao, Y.

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

Zhu, C.

Zhu, H.

H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
[Crossref] [PubMed]

Zhu, S. N.

ACS Appl. Mater. Interfaces (1)

Y. Huang, T. Guo, Z. Tian, B. Yu, M. Ding, X. Li, and B. O. Guan, “Nonradiation cellular thermometry based on interfacial thermally induced phase transformation in polymer coating of optical microfiber,” ACS Appl. Mater. Interfaces 9(10), 9024–9028 (2017).
[Crossref] [PubMed]

ACS Nano (1)

H. Zhu, Y. Wang, and B. Li, “Tunable refractive index sensor with ultracompact structure twisted by poly(trimethylene terephthalate) nanowires,” ACS Nano 3(10), 3110–3114 (2009).
[Crossref] [PubMed]

Actuator B-Chem. (1)

J. Li, F. Chen, H. Li, H. Hu, and Y. Zhao, ““Investigation on high sensitivity RI sensor based on PMF,” Sens,” Actuator B-Chem. 242, 1021–1026 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. Li, H. Xin, H. Lei, and B. Li, “Optofluidic extraction of particles using a sub-microfiber,” Appl. Phys. Lett. 101(7), 074103 (2012).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Biosens. Bioelectron. (1)

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

I. Aryanfar, K. S. Lim, W. Y. Chong, S. W. Harun, and H. Ahmad, “Add-drop filter based on microfiber Mach–Zehnder/Sagnac interferometer,” IEEE J. Quantum Electron. 48(11), 1411–1414 (2012).
[Crossref]

IEEE Photonics J. (1)

S. Wang, H. Yang, Y. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 6804209 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microw. Theory Tech. 18(7), 383–392 (1970).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Nano Lett. (2)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[Crossref] [PubMed]

Nanoscale (1)

F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon mach-zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale 7(3), 924–929 (2015).
[Crossref] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Opt. Express (9)

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
[Crossref] [PubMed]

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[Crossref] [PubMed]

M. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[Crossref] [PubMed]

Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16(19), 14661–14667 (2008).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, and H. Zhang, “Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser,” Opt. Express 23(15), 20030–20039 (2015).
[Crossref] [PubMed]

T. Wieduwilt, J. Dellith, F. Talkenberg, H. Bartelt, and M. A. Schmidt, “Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator,” Opt. Express 22(21), 25333–25346 (2014).
[Crossref] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[Crossref] [PubMed]

F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Opt. Express 22(10), 12645–12652 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (3)

Phys. Rev. A (1)

P. Main, P. J. Mosley, W. Ding, L. Zhang, and A. V. Gorbach, “Hybrid microfiber–lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources,” Phys. Rev. A 94(6), 063844 (2016).
[Crossref]

Sens. Actuator A-Phys. (1)

Y. Liao, J. Wang, H. Yang, X. Wang, and S. Wang, “Salinity sensing based on microfiber knot resonator,” Sens. Actuator A-Phys. 233, 22–25 (2015).
[Crossref]

Sens. Actuator B-Chem. (2)

Y. W. Hsieh, A. B. Wang, X. Y. Lu, and L. A. Wang, “High-throughput on-line multi-detection for refractive index, velocity, size, and concentration measurements of micro-two-phase flow using optical microfibers,” Sens. Actuator B-Chem. 237, 841–848 (2016).
[Crossref]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuator B-Chem. 194, 142–148 (2014).
[Crossref]

Sensors (Basel) (2)

K. S. Lim, I. Aryanfar, W. Y. Chong, Y. K. Cheong, S. W. Harun, and H. Ahmad, “Integrated microfibre device for refractive index and temperature sensing,” Sensors (Basel) 12(9), 11782–11789 (2012).
[Crossref]

T. B. Pham, H. Bui, H. T. Le, and V. H. Pham, “Characteristics of the fiber laser sensor system based on etched-bragg grating sensing probe for determination of the low nitrate concentration in water,” Sensors (Basel) 17(1), 7 (2016).
[Crossref] [PubMed]

Other (4)

World Health Organization, “Guidelines for drinking-water quality,” http://www.who.int/water_sanitation_health/publications/gdwq4-with-add1-chap8.pdf?ua=1 .

A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman & Hall, 1983).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices part 1: adiabaticity criteria,” IEEE Proc. J.138(5), 343–354 (1991).
[Crossref]

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic diagram of MMI.
Fig. 2
Fig. 2 (a) The schematic diagram of a taper. (b) The critical local taper angle at l320 nm.
Fig. 3
Fig. 3 (a) The calculated (effective) RI of core, cladding, HE11, and HE12 mode and the effective RI difference between HE11 and HE12 mode for microfiber with 3.5-μm diameter at 25°C, and the insets are the electric field distributions of HE11 and HE12 mode, respectively. (b) The values of ∂(∆n)/∂λ and ∆n/λ, and the simulated RI sensitivity. The values of ∂(∆n)/∂λ and ∆n/λ are equivalent and the RI sensitivity tends to be infinite at 1482nm.
Fig. 4
Fig. 4 The sensitivity level and their corresponding band for MMIs with different diameters at 25°C.
Fig. 5
Fig. 5 The microscope images of tapers fabricated by (a) heating 9-mm length of SMF in the flame, (b)(c) heating SMF at the edge of outer flame, and (d) heating an ultra-small segment of SMF by a pair of electrodes in the fiber fusion splicer.
Fig. 6
Fig. 6 The schematic diagram of sensing system for sodium nitrate. The insets, captured by a digital camera and an optical microscope, respectively, show a MMI with 2.93-μm waist diameter fixed on a U-shape metal support.
Fig. 7
Fig. 7 The transmission spectra of MMIs with 3.0-μm and 3.2-μm waist diameter.
Fig. 8
Fig. 8 (a) The transmission spectra of MMI with 3.2-μm waist diameter in sodium nitrate solution, and (b) the linear relation between dip position and concentration for dips near 1207nm, 1254nm, and 1325nm, respectively.
Fig. 9
Fig. 9 (a) The transmission spectra of MMI with 3.0-μm waist diameter in sodium nitrate solution, and (b) the linear relation between dip position and concentration for dips near 1230nm, 1270nm, and 1320nm, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ω c = d co (z) 2 z b = d co (z)( β 1 β 2 ) 4π
n 1 = β 1 k 0 , n 2 = β 2 k 0
{ J 1 ' ( U ) U J 1 ( U ) + K 1 ' ( W ) W K 1 ( W ) }{ J 1 ' ( U ) U J 1 ( U ) + n cladding 2 K 1 ' ( W ) n core 2 W K 1 ( W ) }= ( β k 0 n core ) 2 ( V UW ) 4
ΔnL=( m+ 1 2 ) λ m
( Δn+d( Δn ) )L=( m+ 1 2 )( λ m +d λ m )
Δnd λ m = λ m d( Δn )
Δnd λ m = λ m ( ( Δn ) λ m d λ m + ( Δn ) n dn )
S= d λ m dM = 1 Δn λ m ( Δn ) λ m ( Δn ) M = 1 G m ( Δn ) n dn dM
0 L Δn dL=( m+ 1 2 ) λ m

Metrics