Abstract

In this paper, a novel method to generate multiple orbital angular momentum (OAM) vortex beams is proposed using a 1-bit metasurface. Through carefully adjusting the phase shift of each element, mirror-symmetrical OAM vortex beams are generated in targeted directions by a 1-bit metasurface under plane-wave illumination. Moreover, the topological charges of the generated vortex beams are opposite. Based on this phenomenon, dual-beam, four-beam, and full-space OAM vortex waves are respectively studied and generated by conducting full-wave simulations. Finally, a prototype of the proposed metasurface is fabricated and measured in an anechoic chamber. The measurement results show that multiple OAM vortex beams are successfully generated and detected, verifying the effectiveness of the proposed method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum

Yingfan Meng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(17) 22019-22029 (2018)

Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase

Bijun Xu, Chao Wu, Zeyong Wei, Yuancheng Fan, and Hongqiang Li
Opt. Mater. Express 6(12) 3940-3945 (2016)

Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums

Jin Yang, Cheng Zhang, Huifeng Ma, Wei Yuan, Liuxi Yang, Juncheng Ke, Mingzheng Chen, Abdelhady Mahmoud, Qiang Cheng, and Tiejun Cui
Opt. Express 26(24) 31664-31674 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  2. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
    [Crossref]
  3. W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
    [Crossref]
  4. D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
    [Crossref]
  5. F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
    [Crossref] [PubMed]
  6. W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
    [Crossref]
  7. F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Antennas Wirel. Propag. Lett. 2(2), 223–226 (2013).
  8. Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
    [Crossref]
  9. W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
    [Crossref]
  10. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref] [PubMed]
  11. S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
    [Crossref]
  12. C. J. Deng, K. Zhang, and Z. H. Feng, “Generating and measuring tunable orbital angular momentum radio beams with digital control method,” IEEE Trans. Antenn. Propag. 65(2), 899–902 (2017).
    [Crossref]
  13. Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
    [Crossref]
  14. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  15. J. Liu, C. Min, T. Lei, L. Du, Y. Yuan, S. Wei, Y. Wang, and X. C. Yuan, “Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray,” Opt. Express 24(1), 212–218 (2016).
    [Crossref] [PubMed]
  16. X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
    [Crossref]
  17. Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).
  18. W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
    [Crossref] [PubMed]
  19. M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
    [Crossref]
  20. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
    [Crossref] [PubMed]
  21. H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
    [Crossref]
  22. H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
    [Crossref]
  23. H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
    [Crossref]
  24. D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
    [Crossref]
  25. Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
    [Crossref]
  26. Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
    [Crossref]

2018 (3)

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref] [PubMed]

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

2017 (11)

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

C. J. Deng, K. Zhang, and Z. H. Feng, “Generating and measuring tunable orbital angular momentum radio beams with digital control method,” IEEE Trans. Antenn. Propag. 65(2), 899–902 (2017).
[Crossref]

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
[Crossref] [PubMed]

2016 (6)

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

J. Liu, C. Min, T. Lei, L. Du, Y. Yuan, S. Wei, Y. Wang, and X. C. Yuan, “Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray,” Opt. Express 24(1), 212–218 (2016).
[Crossref] [PubMed]

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

2015 (1)

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

2013 (1)

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Antennas Wirel. Propag. Lett. 2(2), 223–226 (2013).

2012 (1)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

2010 (1)

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

2007 (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Arissian, L.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Bai, G. D.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Bergman, J. E. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Bouchard, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Boyd, R. W.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Brousseau, C.

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

Brown, G. G.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Burokur, S. N.

Byun, W. J.

W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
[Crossref] [PubMed]

Cao, X.

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Cao, X. Y.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

Carozzi, T. D.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Chen, M. L. N.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

Chen, Q.

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Chen, T. Y.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Chen, Y. L.

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Cheng, Y. J.

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Chi, H.

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

Cho, Y. H.

W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
[Crossref] [PubMed]

Corkum, P. B.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Cui, T. J.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Daldorff, L. K. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Deng, C. J.

C. J. Deng, K. Zhang, and Z. H. Feng, “Generating and measuring tunable orbital angular momentum radio beams with digital control method,” IEEE Trans. Antenn. Propag. 65(2), 899–902 (2017).
[Crossref]

Deng, D.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Deng, Y. K.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Ding, X.

Do Choi, H.

W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
[Crossref] [PubMed]

Du, L.

Emile, O.

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

Feng, Z. H.

C. J. Deng, K. Zhang, and Z. H. Feng, “Generating and measuring tunable orbital angular momentum radio beams with digital control method,” IEEE Trans. Antenn. Propag. 65(2), 899–902 (2017).
[Crossref]

Forozesh, K.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Fu, X.

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Gao, J.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

Gong, Y. H.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Guo, Z.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Hammond, T. J.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Han, Y.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Hu, X.

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Hui, X. N.

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Isham, B.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Jiang, L. J.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

Jin, L.

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Jin, X. F.

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

Karimi, E.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Karlsson, R. L.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Ko, D. H.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Kong, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Lei, T.

Lei, X. Y.

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Li, M.

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Li, M. K.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

Li, N.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Li, S. J.

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Li, W. Q.

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Li, Y.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Li, Z.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Ling, X.

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, H.

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Liu, J.

Liu, T.

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Liu, W.

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Lu, M.

Ma, Q.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Mahdjoubi, K.

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

Mahmouli, F. E.

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Antennas Wirel. Propag. Lett. 2(2), 223–226 (2013).

Mao, Y.

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Min, C.

Mohammadi, S. M.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Noor, A.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Qu, S.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Ratni, B.

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Sha, W. E. I.

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

Shi, C. B.

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Sun, Y.

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tang, K.

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Thide, B.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Walker, S. D.

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Antennas Wirel. Propag. Lett. 2(2), 223–226 (2013).

Wang, N.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, P.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, R.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, Y.

Wei, S.

Wei, W. L.

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, Q.

Xu, H. X.

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Xu, S.

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Xu, S. H.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

Yang, F.

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Yang, H.

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Yang, H. H.

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

Yao, X.

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Ye, J.

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Yuan, F.

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yuan, X. C.

Yuan, Y.

Yuan, Z. D.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

Zhang, B. W.

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Zhang, C.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

Zhang, D.

Zhang, K.

Zhang, W. T.

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Zhang, X. M.

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Zhang, Z. F.

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

Zheng, S. L.

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

Zheng, Y. J.

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, “Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit,” Adv. Opt. Mater. 5, 1700548 (2017).

Appl. Phys. Lett. (1)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

IEEE Access (1)

D. Zhang, X. Y. Cao, H. H. Yang, and J. Gao, “Radiation performance synthesis for OAM vortex wave generated by reflective metasurface,” IEEE Access 6(1), 28691–28701 (2018).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (7)

X. Y. Lei and Y. J. Cheng, “High-efficiency and high-polarization separation reflectarray element for OAM-folded antenna application,” IEEE Antennas Wirel. Propag. Lett. 16, 1357–1360 (2017).
[Crossref]

H. H. Yang, F. Yang, S. H. Xu, M. K. Li, X. Y. Cao, and J. Gao, “A 1-bit multipolarization reflectarray element for reconfigurable large-aperture antennas,” IEEE Antennas Wirel. Propag. Lett. 16(99), 581–584 (2017).
[Crossref]

M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Detection of orbital angular momentum with metasurface at microwave band,” IEEE Antennas Wirel. Propag. Lett. 17(1), 110–113 (2018).
[Crossref]

Y. J. Zheng, J. Gao, X. Y. Cao, Z. D. Yuan, and H. H. Yang, “Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures,” IEEE Antennas Wirel. Propag. Lett. 14(99), 1582–1585 (2015).
[Crossref]

F. E. Mahmouli and S. D. Walker, “4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel,” IEEE Antennas Wirel. Propag. Lett. 2(2), 223–226 (2013).

Z. F. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, “Generation of plane spiral OAM waves using traveling-wave circular slot antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 8–11 (2017).
[Crossref]

W. T. Zhang, S. L. Zheng, X. N. Hui, Y. L. Chen, X. F. Jin, H. Chi, and X. M. Zhang, “Four-OAM-mode antenna with traveling-wave ring-slot structure,” IEEE Antennas Wirel. Propag. Lett. 16, 194–197 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (6)

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag. 58(2), 565–572 (2010).
[Crossref]

C. J. Deng, K. Zhang, and Z. H. Feng, “Generating and measuring tunable orbital angular momentum radio beams with digital control method,” IEEE Trans. Antenn. Propag. 65(2), 899–902 (2017).
[Crossref]

Y. H. Gong, R. Wang, Y. K. Deng, B. W. Zhang, N. Wang, N. Li, and P. Wang, “Generation and transmission of OAM-carrying vortex beams using circular antenna array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode pancharatnam–berry metasurfaces,” IEEE Trans. Antenn. Propag. 65(12), 7378–7382 (2017).
[Crossref]

H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-bit 10×10 reconfigurable reflectarray antenna: design, optimization, and experiment,” IEEE Trans. Antenn. Propag. 64(6), 2246–2254 (2016).
[Crossref]

Y. Zhao, X. Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, “Broadband low-RCS metasurface and its application on antenna,” IEEE Trans. Antenn. Propag. 64(7), 2954–2962 (2016).
[Crossref]

IET Microw. Antennas Propag. (1)

W. L. Wei, K. Mahdjoubi, C. Brousseau, and O. Emile, “Horn antennas for generating radio waves bearing orbital angular momentum by using spiral phase plate,” IET Microw. Antennas Propag. 10(13), 1420–1427 (2016).
[Crossref]

Nat. Commun. (1)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8, 14970 (2017).
[Crossref] [PubMed]

New J. Phys. (1)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Opt. Commun. (1)

D. Deng, Y. Li, Y. Han, J. Ye, Z. Guo, and S. Qu, “Multifocal array with controllable orbital angular momentum modes by tight focusing,” Opt. Commun. 382, 559–564 (2017).
[Crossref]

Opt. Express (2)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref] [PubMed]

Plasmonics (1)

W. Liu, X. Hu, L. Jin, X. Fu, and Q. Chen, “Generation of in-plane light beam with orbital angular momentum with an asymmetrical plasmonic waveguide,” Plasmonics 11(5), 1323–1329 (2016).
[Crossref]

Sci. Rep. (1)

W. J. Byun, H. Do Choi, and Y. H. Cho, “Orbital angular momentum (OAM) antennas via mode combining and canceling in near-field,” Sci. Rep. 7(1), 12805 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Scene description of plane-wave incidence for a metasurface.
Fig. 2
Fig. 2 (a) The phase delay distribution across the metasurface. (b) The scattering pattern in uv-plane. (c) Scattering phase distribution in uv-plane. Black circles in (b) and (c) denote the main lobe and the insets at lower right corner are the megascopic main lobe.
Fig. 3
Fig. 3 (a) 1-bit phase delay distribution. (b) and (c) are the normalized scattering pattern and phase distribution in uv-plane, respectively.
Fig. 4
Fig. 4 (a) The phase delay distribution, (b) the normalized scattering pattern in uv-plane and (c) the scattering phase distribution in uv-plane for conventional metasurface. The main lobe is deflected to θ = 30°. (d), (e) and (f) are the corresponding maps for 1-bit metasurface.
Fig. 5
Fig. 5 The normalized pattern pointing to 30°.
Fig. 6
Fig. 6 (a) The phase delay distribution, (b) the normalized scattering pattern in uv-plane and (c) the scattering phase distribution in uv-plane for 1-bit metasurface. The incident angle is θinc = 10° and one beam is set to point to θ = 5°. The other beam appears at θ = −26°.
Fig. 7
Fig. 7 Schematic illustration for dual OAM vortex beams generation.
Fig. 8
Fig. 8 (a) The reflection phase against frequency of the two kinds of elements. (b) The 3D pattern and phase distribution in sampling plane. Point O is the center of the metasurface.
Fig. 9
Fig. 9 Schematic illustration for four OAM vortex beams generation. (a) The four beams are all in yoz-plane. OAM vortex beams with l = ± 1 are x-polarized while those with l = ± 2 are y-polarized. (b) OAM vortex beams with l = ± 1 are in yoz-plane and are x-polarized, while those with l = ± 2 are in xoz-plane and are y-polarized.
Fig. 10
Fig. 10 (a), (b), (c), and (d) are phase delays and (e), (f), (g), and (h) are the corresponding arms distributions. (a) and (e) are for l = 1, θ = 15°, φ = 90°. (b) and (f) are for l = 2, θ = 40°, φ = 90°. (c) and (g) are for l = 1, θ = 30°, φ = 90°. (d) and (h) are for l = 2, θ = 30°, φ = 0°. (a), (e), (c), and (g) are x-pol. (b), (f), (d), and (h) are y-pol.
Fig. 11
Fig. 11 The patterns of OAM vortex beams. The four OAM beams in (a) are all in yoz-plane. In (b), OAM beams with l = ± 1 are in yoz-plane and OAM beams with l = ± 2 are in xoz-plane.
Fig. 12
Fig. 12 Schematic illustration of full-space OAM vortex beams generation. (a) OAM vortex beams in full-space are all in yoz-plane. (b) OAM vortex beams in upper half-space are in yoz-plane while those in lower half-space are in xoz-plane.
Fig. 13
Fig. 13 The element structure for full-space OAM vortex beams generation.
Fig. 14
Fig. 14 The phase and magnitude of (a) reflected x-polarized incident wave and (b) transmitted y-polarized incident wave.
Fig. 15
Fig. 15 The patterns of full-space OAM vortex beams. The four OAM beams in (a) are all in yoz-plane. In (b), OAM beams with l = ± 2 are in yoz-plane and OAM beams with l = ± 1 are in xoz-plane. In both (a) and (b), OAM beams in upper half-space are x-polarized and OAM beams in lower half-space are y-polarized.
Fig. 16
Fig. 16 (a) The fabricated metasurface and feed horn. (b) The experiment setup.
Fig. 17
Fig. 17 The measured phase distribution in the sampling planes.

Tables (1)

Tables Icon

Table 1 Elements Structure and Co-polarization Reflection Phase

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E s ( θ,φ )= cos q e θ m=1 M n=1 N A mn s e jk r fmn e j φ mn e jk r mn u ^
A mn s = cos q e θ inc | Γ mn |
-k r fmn + φ mn +k r mn u ^ | u ^ = u ^ 0 =l Φ mn
φ mn | 1 -bit ={ 9 0 o , 0 o φ mn <18 0 o 27 0 o , 18 0 o φ mn 36 0 o

Metrics