Abstract

We make use of transformation optics technique to realize cloaking operation in the light diffusive regime, for spherical objects. The cloak requires spatially heterogeneous anisotropic diffusivity, as well as spatially varying speed of light and absorption. Analytic calculations of Photon’s fluence confirm minor role of absorption in reduction of far-field scattering, and a monopole fluence field converging to a constant in the static regime in the invisibility region. The latter is in contrast to acoustic and electromagnetic cloaks, for which the field vanishes inside the core. These results are finally discussed in the context of mass diffusion, where cloaking can be achieved with a heterogeneous anisotropic diffusivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transformation thermodynamics: cloaking and concentrating heat flux

Sebastien Guenneau, Claude Amra, and Denis Veynante
Opt. Express 20(7) 8207-8218 (2012)

An external cloak with arbitrary cross section based on complementary medium and coordinate transformation

Chengfu Yang, Jingjing Yang, Ming Huang, Zhe Xiao, and Jinhui Peng
Opt. Express 19(2) 1147-1157 (2011)

Fourier optics theory for invisibility cloaks

Kedi Wu, Qiluan Cheng, and Guo Ping Wang
J. Opt. Soc. Am. B 28(6) 1467-1474 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).
  2. A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
    [Crossref]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [Crossref] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [Crossref] [PubMed]
  5. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
    [Crossref]
  6. H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
    [Crossref]
  7. M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
    [Crossref]
  8. G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
    [Crossref]
  9. M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
    [Crossref]
  10. N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
    [Crossref] [PubMed]
  11. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
    [Crossref] [PubMed]
  12. A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
    [Crossref]
  13. D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  14. B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
    [Crossref]
  15. M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
    [Crossref]
  16. M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
    [Crossref]
  17. G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
    [Crossref]
  18. M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
    [Crossref]
  19. M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
    [Crossref] [PubMed]
  20. S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20, 8207–8218 (2012).
    [Crossref] [PubMed]
  21. A. Alù, “Thermal cloaks get hot,” Physics 7, 12 (2014).
    [Crossref]
  22. M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013).
    [Crossref] [PubMed]
  23. U. Leonhardt, “Applied physics: Cloaking of heat,” Nature 498, 440–441 (2013).
    [Crossref] [PubMed]
  24. M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
    [Crossref]
  25. T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
    [Crossref]
  26. S. Guenneau and C. Amra, “Anisotropic conductivity rotates heat fluxes in transient regimes,” Opt. express 21, 6578–6583 (2013).
    [Crossref] [PubMed]
  27. M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).
  28. M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
    [Crossref] [PubMed]
  29. S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
    [Crossref] [PubMed]
  30. R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
    [Crossref] [PubMed]
  31. T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
    [Crossref] [PubMed]
  32. H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
    [Crossref] [PubMed]
  33. R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).
  34. S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
    [Crossref]
  35. Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
    [Crossref] [PubMed]
  36. W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  37. D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
    [Crossref]
  38. M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
    [Crossref]
  39. R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
    [Crossref] [PubMed]
  40. R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
    [Crossref] [PubMed]
  41. M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
    [Crossref] [PubMed]
  42. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
    [Crossref]
  43. S. Guenneau and T. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10, 20130106 (2013).
    [Crossref]
  44. L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
    [Crossref] [PubMed]
  45. T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
    [Crossref] [PubMed]
  46. A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
    [Crossref] [PubMed]
  47. R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
    [Crossref] [PubMed]
  48. D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).
  49. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
    [Crossref] [PubMed]
  50. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).
  51. L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
    [Crossref]
  52. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
    [Crossref]

2018 (3)

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

2017 (2)

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

2016 (2)

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

2015 (3)

R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
[Crossref] [PubMed]

L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
[Crossref]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

2014 (7)

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

A. Alù, “Thermal cloaks get hot,” Physics 7, 12 (2014).
[Crossref]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

2013 (7)

S. Guenneau and T. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10, 20130106 (2013).
[Crossref]

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013).
[Crossref] [PubMed]

U. Leonhardt, “Applied physics: Cloaking of heat,” Nature 498, 440–441 (2013).
[Crossref] [PubMed]

S. Guenneau and C. Amra, “Anisotropic conductivity rotates heat fluxes in transient regimes,” Opt. express 21, 6578–6583 (2013).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

2012 (5)

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20, 8207–8218 (2012).
[Crossref] [PubMed]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

2011 (2)

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

2009 (2)

B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
[Crossref]

M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
[Crossref]

2008 (5)

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
[Crossref]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

2007 (2)

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

2003 (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
[Crossref]

1993 (1)

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

1992 (1)

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

1990 (1)

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Alu, A.

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

Alù, A.

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

A. Alù, “Thermal cloaks get hot,” Physics 7, 12 (2014).
[Crossref]

Alwakil, A.

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

Amra, C.

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

S. Guenneau and C. Amra, “Anisotropic conductivity rotates heat fluxes in transient regimes,” Opt. express 21, 6578–6583 (2013).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20, 8207–8218 (2012).
[Crossref] [PubMed]

Bagci, H.

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

Bai, X.

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Bellieud, M.

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

Boas, D.

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

Boas, D. A.

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

Briane, M.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
[Crossref]

Brun, M.

M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
[Crossref]

Buckman, T.

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

Bückmann, T.

R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
[Crossref] [PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Castaldi, G.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

Chan, C.

H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Chance, B.

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

Chen, H.

H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Chen, J.-S.

T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
[Crossref]

Chen, P.

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

Chen, P.-Y.

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).

Chen, T.

T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
[Crossref]

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Craster, R.

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

de Lustrac, A.

B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
[Crossref]

Diatta, A.

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Dupont, G.

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

Enoch, S.

M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).

Farhat, M.

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
[Crossref]

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Galdi, V.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

Gao, D.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Gao, F.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

Germain, D.

B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
[Crossref]

Greenleaf, A.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
[Crossref]

Guenneau, S.

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

S. Guenneau and T. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10, 20130106 (2013).
[Crossref]

S. Guenneau and C. Amra, “Anisotropic conductivity rotates heat fluxes in transient regimes,” Opt. express 21, 6578–6583 (2013).
[Crossref] [PubMed]

S. Guenneau, C. Amra, and D. Veynante, “Transformation thermodynamics: cloaking and concentrating heat flux,” Opt. Express 20, 8207–8218 (2012).
[Crossref] [PubMed]

M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).

R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).

Han, T.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Hasan, S. B.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Horsley, S.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Hutridurga, H.

R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).

Justice, B.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kadic, M.

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

Kanté, B.

B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
[Crossref]

Kurylev, Y.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

Lai, Y.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Lassas, M.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
[Crossref]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Leonhardt, U.

U. Leonhardt, “Applied physics: Cloaking of heat,” Nature 498, 440–441 (2013).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

Li, B.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Li, J.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Li, Y.

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

Luo, H.

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

Maldovan, M.

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013).
[Crossref] [PubMed]

McCall, M.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Milton, G. W.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
[Crossref]

Mitchell-Thomas, R. C.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Moccia, M.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

Mock, J.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Movchan, A.

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

Movchan, A. B.

M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
[Crossref]

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Naber, A.

Narayana, S.

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
[Crossref] [PubMed]

Nicolet, A.

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

Niemeyer, A.

O’Leary, M.

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

Pavliotis, G.

R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).

Pendry, J.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Pendry, J. B.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

Prahl, S.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Puvirajesinghe, T.

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

S. Guenneau and T. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10, 20130106 (2013).
[Crossref]

Puvirajesinghe, T. M.

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

Qiu, C.-W.

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Quevedo-Teruel, O.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Rahm, M.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

Ramakrishna, S. A.

L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
[Crossref]

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

Renthlei, L.

L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
[Crossref]

Rockstuhl, C.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Salama, K.

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

Sato, Y.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
[Crossref] [PubMed]

Savo, S.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Schittny, R.

R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Shi, X.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

Smith, D.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Smith, D. R.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

Song, R.

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

Starr, A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref] [PubMed]

Sun, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

Tassin, P.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Thiel, M.

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Thong, J. T.

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

Uhlmann, G.

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
[Crossref]

Veynante, D.

Wanare, H.

L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
[Crossref]

Wegener, M.

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

R. Schittny, A. Niemeyer, M. Kadic, T. Bückmann, A. Naber, and M. Wegener, “Diffuse-light all-solid-state invisibility cloak,” Opt. Lett. 40, 4202–4205 (2015).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref] [PubMed]

Welch, A.

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Weng, C.-N.

T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
[Crossref]

Wilhelm, M.

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref] [PubMed]

Willis, J. R.

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
[Crossref]

Xu, H.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

Yang, T.

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

Yodh, A.

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

Zeng, L.

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

Zerrad, M.

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

Zhang, B.

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

Zhi, Z.

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

Zhu, J.

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

Zolla, F.

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

ACS Nano (1)

M. Kadic, S. Guenneau, S. Enoch, and S. A. Ramakrishna, “Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media,” ACS Nano 5, 6819–6825 (2011).
[Crossref] [PubMed]

Appl. Phy. Lett. (1)

M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phy. Lett. 94, 061903 (2009).
[Crossref]

Appl. Phys. Lett. (2)

H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

T. Chen, C.-N. Weng, and J.-S. Chen, “Cloak for curvilinearly anisotropic media in conduction,” Appl. Phys. Lett. 93, 114103 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Cheong, S. Prahl, and A. Welch, “A review of the optical properties of biological,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

J. Opt. (2)

S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat, “Cloaking and anamorphism for light and mass diffusion,” J. Opt. 19, 103002 (2017).
[Crossref]

M. McCall, J. B. Pendry, V. Galdi, Y. Lai, S. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, and et al., “Roadmap on transformation optics,” J. Opt. 20, 063001 (2018).
[Crossref]

J. R. Soc. Interface (2)

S. Guenneau and T. Puvirajesinghe, “Fick’s second law transformed: one path to cloaking in mass diffusion,” J. R. Soc. Interface 10, 20130106 (2013).
[Crossref]

T. Puvirajesinghe, Z. Zhi, R. Craster, and S. Guenneau, “Tailoring drug release rates in hydrogel-based therapeutic delivery applications using graphene oxide,” J. R. Soc. Interface 15, 20170949 (2018).
[Crossref] [PubMed]

Math. Res. Lett. (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, “On nonuniqueness for calderon’s inverse problem,” Math. Res. Lett. 10, 685–694 (2003).
[Crossref]

Nat. Commun. (2)

T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials,” Nat. Commun. 5, 4130 (2014).
[Crossref] [PubMed]

Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, “Structured thermal surface for radiative camouflage,” Nat. Commun. 9, 273 (2018).
[Crossref] [PubMed]

Nature (2)

M. Maldovan, “Sound and heat revolutions in phononics,” Nature 503, 209–217 (2013).
[Crossref] [PubMed]

U. Leonhardt, “Applied physics: Cloaking of heat,” Nature 498, 440–441 (2013).
[Crossref] [PubMed]

New J. Phys. (4)

G. W. Milton, M. Briane, and J. R. Willis, “On cloaking for elasticity and physical equations with a transformation invariant form,” New J. Phys. 8, 248 (2006).
[Crossref]

M. Farhat, S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, “A homogenization route towards square cylindrical acoustic cloaks,” New J. Phys. 10, 115030 (2008).
[Crossref]

S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys. 9, 45 (2007).
[Crossref]

A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Isotropic transformation optics: approximate acoustic and quantum cloaking,” New J. Phys. 10, 115024 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phy. Rev. Lett. (2)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3d acoustic cloaking shell,” Phy. Rev. Lett. 100, 024301 (2008).
[Crossref]

M. Farhat, S. Enoch, S. Guenneau, and A. Movchan, “Broadband cylindrical acoustic cloak for linear surface waves in a fluid,” Phy. Rev. Lett. 101, 134501 (2008).
[Crossref]

Phys. Rev. A (1)

L. Renthlei, H. Wanare, and S. A. Ramakrishna, “Enhanced propagation of photon density waves in random amplifying media,” Phys. Rev. A 91, 043825 (2015).
[Crossref]

Phys. Rev. B (4)

M. Farhat, S. Guenneau, and S. Enoch, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates,” Phys. Rev. B 85, 020301 (2012).
[Crossref]

B. Kanté, D. Germain, and A. de Lustrac, “Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies,” Phys. Rev. B 80, 201104 (2009).
[Crossref]

A. Diatta, M. Kadic, M. Wegener, and S. Guenneau, “Scattering problems in elastodynamics,” Phys. Rev. B 94, 100105 (2016).
[Crossref]

M. Farhat, P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, “Frequency-selective surface acoustic invisibility for three-dimensional immersed objects,” Phys. Rev. B 86, 174303 (2012).
[Crossref]

Phys. Rev. E (1)

D. Boas, M. O’Leary, B. Chance, and A. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999 (1993).
[Crossref]

Phys. Rev. Lett. (6)

M. O’leary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658 (1992).
[Crossref]

S. Narayana and Y. Sato, “Heat flux manipulation with engineered thermal materials,” Phys. Rev. Lett. 108, 214303 (2012).
[Crossref] [PubMed]

R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, “Experiments on transformation thermodynamics: molding the flow of heat,” Phys. Rev. Lett. 110, 195901 (2013).
[Crossref] [PubMed]

T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C.-W. Qiu, “Experimental demonstration of a bilayer thermal cloak,” Phys. Rev. Lett. 112, 054302 (2014).
[Crossref] [PubMed]

H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, “Ultrathin three-dimensional thermal cloak,” Phys. Rev. Lett. 112, 054301 (2014).
[Crossref] [PubMed]

N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,” Phys. Rev. Lett. 108, 014301 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

Physics (1)

A. Alù, “Thermal cloaks get hot,” Physics 7, 12 (2014).
[Crossref]

Proc. R. Soc. A (1)

M. Farhat, P. Chen, S. Guenneau, H. Bağcı, K. Salama, and A. Alù, “Cloaking through cancellation of diffusive wave scattering,” Proc. R. Soc. A 472, 20160276 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

L. Zeng and R. Song, “Controlling chloride ions diffusion in concrete,” Sci. Rep. 3, 3359 (2013).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

A. Alwakil, M. Zerrad, M. Bellieud, and C. Amra, “Inverse heat mimicking of given objects,” Sci. Rep. 7, 43288 (2017).
[Crossref] [PubMed]

M. Farhat, P.-Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, “Thermal invisibility based on scattering cancellation and mantle cloaking,” Sci. Rep. 5, 9876 (2015).
[Crossref] [PubMed]

Science (5)

R. Schittny, M. Kadic, T. Bückmann, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[Crossref] [PubMed]

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. Schittny, M. Kadic, T. Buckman, and M. Wegener, “Invisibility cloaking in a diffusive light scattering medium,” Science 345, 427–429 (2014).
[Crossref] [PubMed]

Wave Motion (1)

G. Dupont, M. Farhat, A. Diatta, S. Guenneau, and S. Enoch, “Numerical analysis of three-dimensional acoustic cloaks and carpets,” Wave Motion 48, 483–496 (2011).
[Crossref]

Other (4)

M. Farhat, P.-Y. Chen, S. Guenneau, and S. Enoch, Transformation Wave Physics: Electromagnetics, Elastodynamics, and Thermodynamics (Pan Stanford Publishing, Singapore, 2016).

R. Craster, S. Guenneau, H. Hutridurga, and G. Pavliotis, “Cloaking via mapping for the heat equation,” arXiv preprint arXiv:1712.05439 (2017).

D. A. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis, University of Pennsylvania (1996).

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “Reply to the comment on” a self-assembled three-dimensional cloak in the visible” in scientific reports 3, 2328,” arXiv preprint arXiv:1310.5888 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cross-section of the DPDW structure to cloak. Schematic of the cloak: 3D scenario showing the DPDWs flux transfer, with the object to cloak in the middle (light red sphere). Different shells with different properties represent the DPDW cloak, with various parameters of the study. (b) Dispersion relation of the DPDW, giving the norm of the wavenumber versus the normalized diffusivity and frequency.
Fig. 2
Fig. 2 (a) Analysis of the scattering cross-section (SCS) behavior from a bare spherical object with varying absorption coefficient at frequency 50 MHz. (b) Plot of SCS versus frequency for different diffusivity of the bare object. Far-field scattering from (c) the bare object (sphere) and (d) the cloaked sphere, in logarithmic scale.
Fig. 3
Fig. 3 (a) Snapshot of the total normalized fluence field Φ/Φ0 around the cloak at two different wavenumbers (a) k0b = π/10 and (b) k0b = π/2. (We should mention here that colors inside the shell and core have nothing to do with color scale for normalized fluence.)
Fig. 4
Fig. 4 Heating inside the core: Logarithmic plot of the analytical expressions of the real part of the fluence field Φ versus the distance from origin (normalized with respect to a), as obtained from (24), for a fixed angle θ.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Ω υ ( x ) Φ ( x ) + μ a ( x ) Φ ( x ) + ς ( x ) = [ D ( x ) Φ ( x ) ] ,
k 0 = i ( Ω υ 0 + μ a , 0 ) / D 0 ,
Ω [ det ( J ) / υ ( x ) ] Φ ( x ) + μ a ( x ) det ( J ) Φ ( x ) + det ( J ) ς ( x ) = ( J T D ( x ) J 1 det ( J ) Φ ( x ) ) .
D _ _ = J T D J 1 det ( J ) = D J T J 1 det ( J ) = D T 1 ,
r ( D r r 2 Φ r ) + D θ sin θ θ ( sin θ Φ θ ) + D ϕ sin 2 θ 2 Φ ϕ 2 r 2 [ Ω υ + μ a ] Φ = 0 ,
1 D ϕ r ( D r r 2 f r ) + ( k 2 r 2 n ( n + 1 ) ) f = 0 ,
r 2 D r = ( r a ) 2 D 0 A , D ϕ = D 0 A , and k 2 r 2 = k sh 2 ( r a ) 2 ,
r ( ( r a ) 2 f r ) + ( k sh 2 ( r a ) 2 n ( n + 1 ) ) f = 0 ,
Φ inc = Φ 0 n = 0 n = i n ( 2 n + 1 ) j n ( k 0 r ) P n ( cos θ ) ,
Φ scat = Φ 0 n = 0 n = c n h n ( 1 ) ( k 0 r ) P n ( cos θ ) ,
Φ sh = Φ 0 n = 0 n = d n j n ( k s h ( r a ) ) P n ( cos θ ) ,
Φ int = Φ 0 n = 0 n = e n j n ( k 0 r ) P n ( cos θ ) ,
i n ( 2 n + 1 ) j n ( k 0 b ) + c n h n ( 1 ) ( k 0 b ) = d n j n ( k s h ( b a ) ) , D 0 k 0 [ i n ( 2 n + 1 ) j n ( k 0 b ) + c n j n   ( 1 ) ( k 0 b ) ] = D r ( b ) k s h × [ d n j n ( k s h ( b a ) ) ] .
c n i n ( 2 n + 1 ) = k 0 D 0 j n ( k 0 b ) j n [ k s h ( b a ) ] + k s h D r ( b ) j n ( k 0 b ) j n [ k s h ( b a ) ] k 0 D 0 h n   ( 1 ) ( k 0 b ) j n [ k s h ( b a ) ] k s h D r ( b ) h n   ( 1 ) ( k 0 b ) j n [ k s h ( b a ) ] .
c n b i n ( 2 n + 1 ) = j n ( k 0 a ) j n [ k 1 a ) ] + χ j n ( k 0 a ) j n [ k 1 a ) ] h n   ( 1 ) ( k 0 a ) j n [ k 1 a ) ] χ h n ( 1 ) ( k 0 a ) j n [ k 1 a ) ] ,
χ = k 1 D 1 k 0 D 0 ,
S C S = 4 π | k 0 | 2 n = 0 N 0 ( 2 n + 1 ) | c n | 2 .
k 0 b = k s h ( b a ) , k s h D r ( b ) = k 0 D 0 .
A = b b a , k s h = b b a k 0 .
D r = b b a ( r a ) 2 r 2 D 0 , D θ = D ϕ = b b a D 0 ,
Ω / υ + μ a = b 3 ( b a ) 3 ( r a ) 2 r 2 ( Ω / υ 0 + μ a , 0 ) .
υ = ( b a ) 3 b 3 r 2 ( r a ) 2 υ 0 and μ a = b 3 ( b a ) 3 ( r a ) 2 r 2 μ a , 0 ,
i n ( 2 n + 1 ) j n ( k s h ( r a ) ) = e n j n ( k 0 r ) , b ( r a ) 2 ( b a ) r 2 i n ( 2 n + 1 ) j n ( k s h ( r a ) ) = e n j n ( k 0 r ) .
Φ int = Φ 0 j 0 ( k 0 r ) P n ( cos ( θ ) ) ,
Ω u = ( κ ( x ) u ) + p ( x , Ω ) ,
det ( J ) Ω u = ( κ _ _ det ( J ) u ) + det ( J ) p ( x , Ω ) ,
κ r = b b a ( r a ) 2 r 2 , κ θ = κ ϕ = b b a ,
u int = U j 0 ( k 0 r ) P 0 ( cos ( θ ) ) ,

Metrics