Abstract

In situ chlorophyll fluorometers have been used to quantify the distribution of chlorophyll concentration in natural waters for decades. However, chlorophyll fluorescence is depressed during daylight hours due to non-photochemical quenching (NPQ). Corrections attempted to date have provided improvement but still remain unsatisfactory, often over-estimating the expected value. In this study, we examine the relationship between NPQ and instantaneous Photosynthetically Active Radiation (iPAR) using field data from BGC-Argo floats equipped with Chlorophyll-a fluorometers and radiometers. This analysis leads to an improved NPQ correction that incorporates both iPAR and mixed layer depth (MLD) and is validated against data collected at sunrise or sunset. The optimal NPQ light threshold is found to be iPAR = 15 μmol quanta m−2 s−1, and the proposed methods based on such a light threshold correct the NPQ effect more accurately than others, except in “shallow-mixing” waters (NPQ light threshold depth deeper than MLD). For these waters, an empirical-relationship-based method is proposed for improvement of NPQ correction using an iPAR profile. It is therefore recommended that, for optimal NPQ corrections, profiling floats measuring chlorophyll fluorescence in daytime be equipped with iPAR radiometers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar

Jennifer A. Schulien, Michael J. Behrenfeld, Johnathan W. Hair, Chris A. Hostetler, and Michael S. Twardowski
Opt. Express 25(12) 13577-13587 (2017)

Autonomous observations of in vivo fluorescence and particle backscattering in an oceanic oxygen minimum zone

A. L. Whitmire, R. M. Letelier, V. Villagrán, and O. Ulloa
Opt. Express 17(24) 21992-22004 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).
  2. T. Platt, “Local phytoplankton abundance and turbulence,” Deep-Sea Res. 19, 183–187 (1972).
  3. J. J. Cullen, “The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a,” Can. J. Fish. Aquat. Sci. 39(5), 791–803 (1982).
    [Crossref]
  4. E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
    [Crossref]
  5. IOCCG, “Bio-Optical Sensors on Argo Floats,” Reports of the International Ocean-Colour Coordinating Group, No. 11, H. Claustre, ed. (2011).
  6. K. Johnson and H. Claustre, “The scientific rationale, design and Implementation Plan for a Biogeochemical-Argo float array,” (2016).
  7. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence,” Limnol. Oceanogr. Methods 8, 695–708 (2010).
  8. X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
    [Crossref]
  9. H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
    [Crossref]
  10. R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
    [Crossref]
  11. X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
    [Crossref]
  12. M. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006).
    [Crossref]
  13. B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
    [Crossref]
  14. X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
    [Crossref]
  15. A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
    [Crossref]
  16. D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrients stress,” Mar. Biol. 23(1), 39–46 (1973).
    [Crossref]
  17. J. Marra, “Analysis of diel variability in chlorophyll fluorescence,” J. Mar. Res. 55(4), 767–784 (1997).
    [Crossref]
  18. R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
    [Crossref]
  19. M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
    [Crossref]
  20. H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
    [Crossref]
  21. C. Roesler and A. H. Barnard, “Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height,” Methods in Oceanography 7, 79–94 (2013).
    [Crossref]
  22. S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).
  23. L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
    [Crossref]
  24. J. Plant, personal communications (2017).
  25. K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(9), 1521–1543 (1995).
    [Crossref]
  26. O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
    [Crossref]
  27. C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
    [Crossref]
  28. G. Monterey and S. Levitus, “Seasonal variability of mixed layer depth for the World Ocean,” NOAA Atlas NESDIS 14, US Gov. Printing Office, Wash., D.C., 96 pp. (1997).
  29. G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
    [Crossref]
  30. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
    [Crossref]
  31. E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
    [Crossref]
  32. C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).
  33. C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
    [Crossref]
  34. J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as anew criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. Methods 56(6), 2293–2307 (2011).
    [Crossref]
  35. K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
    [Crossref]
  36. W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
    [Crossref]
  37. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
    [Crossref]

2017 (4)

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

2016 (1)

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

2015 (3)

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

2013 (1)

C. Roesler and A. H. Barnard, “Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height,” Methods in Oceanography 7, 79–94 (2013).
[Crossref]

2012 (2)

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

2011 (2)

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as anew criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. Methods 56(6), 2293–2307 (2011).
[Crossref]

2010 (1)

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence,” Limnol. Oceanogr. Methods 8, 695–708 (2010).

2009 (1)

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

2008 (2)

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
[Crossref]

2007 (1)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

2006 (1)

M. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006).
[Crossref]

2004 (1)

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

2001 (1)

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

2000 (1)

O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
[Crossref]

1999 (1)

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

1997 (2)

J. Marra, “Analysis of diel variability in chlorophyll fluorescence,” J. Mar. Res. 55(4), 767–784 (1997).
[Crossref]

R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
[Crossref]

1995 (1)

K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(9), 1521–1543 (1995).
[Crossref]

1994 (1)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

1990 (1)

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

1982 (1)

J. J. Cullen, “The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a,” Can. J. Fish. Aquat. Sci. 39(5), 791–803 (1982).
[Crossref]

1973 (1)

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrients stress,” Mar. Biol. 23(1), 39–46 (1973).
[Crossref]

1972 (1)

T. Platt, “Local phytoplankton abundance and turbulence,” Deep-Sea Res. 19, 183–187 (1972).

1966 (1)

C. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

Abbott, M. R.

R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
[Crossref]

Amos, A. F.

O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
[Crossref]

Antoine, D.

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Babin, M.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

Barbieux, M.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

Barnard, A. H.

C. Roesler and A. H. Barnard, “Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height,” Methods in Oceanography 7, 79–94 (2013).
[Crossref]

Behrenfeld, M.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

M. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006).
[Crossref]

Bester, M.

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

Biermann, L.

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

Blain, S.

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

Boehme, L.

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

Boss, E.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

M. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

Brainerd, K. E.

K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(9), 1521–1543 (1995).
[Crossref]

Bricaud, A.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

Brickley, P.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Brierley, A.

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

Briggs, N.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

Cailliau, C.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

Carder, K. L.

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Claustre, H.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

Coletti, L. J.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Cullen, J. J.

J. J. Cullen, “The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a,” Can. J. Fish. Aquat. Sci. 39(5), 791–803 (1982).
[Crossref]

d’Ortenzio, F.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

Dall’Olmo, G.

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

de Boyer Montégut, C.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

Doney, S.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Drapeau, S.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

Eriksen, C. C.

B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
[Crossref]

Feldman, G.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Ferrari, R.

J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as anew criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. Methods 56(6), 2293–2307 (2011).
[Crossref]

Fischer, A. S.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

Franz, B.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Franz, B. A.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Gentili, B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Gnanadesikan, A.

G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
[Crossref]

Gregg, M. C.

K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(9), 1521–1543 (1995).
[Crossref]

Gregg, W. W.

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Gregor, L.

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

Guinet, C.

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

Haentjens, N.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Haëntjens, N.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

Hewes, C. D.

O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
[Crossref]

Holm-Hansen, O.

O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
[Crossref]

Hooker, S. B.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Huot, Y.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Iudicone, D.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

Jamet, C.

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

Jannasch, H. W.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Johnson, K. S.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Karl, D. M.

R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
[Crossref]

Kiefer, D. A.

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrients stress,” Mar. Biol. 23(1), 39–46 (1973).
[Crossref]

Kim, G. E.

G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
[Crossref]

Lavigne, H.

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

Lazar, A.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

Letelier, R. M.

R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
[Crossref]

Lima, I.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Lorenzen, C.

C. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

Madec, G.

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

Mahowald, N.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Marie, D.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

Maritorena, S.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

Marra, J.

J. Marra, “Analysis of diel variability in chlorophyll fluorescence,” J. Mar. Res. 55(4), 767–784 (1997).
[Crossref]

Marty, J.-C.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

McClain, C.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Mignot, A.

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

Milligan, A.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Moore, J.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Morel, A.

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Moutier, W.

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

O’Malley, R.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Organelli, E.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

Perry, M. J.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
[Crossref]

Plant, J. N.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Platt, T.

T. Platt, “Local phytoplankton abundance and turbulence,” Deep-Sea Res. 19, 183–187 (1972).

Poteau, A.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

Pradal, M.-A.

G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
[Crossref]

Prieur, L.

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

Proctor, C. W.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence,” Limnol. Oceanogr. Methods 8, 695–708 (2010).

Ras, J.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

Riser, S.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Riser, S. C.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Roesler, C.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

C. Roesler and A. H. Barnard, “Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height,” Methods in Oceanography 7, 79–94 (2013).
[Crossref]

Roesler, C. S.

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence,” Limnol. Oceanogr. Methods 8, 695–708 (2010).

Ryan-Keogh, T. J.

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

Sackmann, B. S.

B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
[Crossref]

Sakamoto, C. M.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Sarmiento, J. L.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Sauzède, R.

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

Schmechtig, C.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

Schütt, J.

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

Siegel, D.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Strutton, P. G.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Swift, D.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Swift, D. D.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Tailliez, D.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

Talley, L. D.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Taylor, J. R.

J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as anew criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. Methods 56(6), 2293–2307 (2011).
[Crossref]

Taylor, L.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Thomalla, S. J.

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

Uitz, J.

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

Vaulot, D.

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

Vellucci, V.

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

Werdell, P. J.

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Westberry, T.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Wiggert, J.

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

Williams, N. L.

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

Xing, X.

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

Zaneveld, R.

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

Biogeosci. (1)

H. Lavigne, F. d’Ortenzio, H. Claustre, and A. Poteau, “Towards a merged satellite and in situ fluorescence ocean chlorophyll product,” Biogeosci. 9(6), 2111–2125 (2012).
[Crossref]

Biogeosciences (2)

M. Behrenfeld, T. Westberry, E. Boss, R. O’Malley, D. Siegel, J. Wiggert, B. Franz, C. McClain, G. Feldman, S. Doney, J. Moore, G. Dall’Olmo, A. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences 6(5), 779–794 (2009).
[Crossref]

G. E. Kim, M.-A. Pradal, and A. Gnanadesikan, “Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization,” Biogeosciences 12(16), 5119–5132 (2015).
[Crossref]

Biogeosciences Discuss. (1)

B. S. Sackmann, M. J. Perry, and C. C. Eriksen, “Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters,” Biogeosciences Discuss. 5(4), 2839–2865 (2008).
[Crossref]

Can. J. Fish. Aquat. Sci. (1)

J. J. Cullen, “The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a,” Can. J. Fish. Aquat. Sci. 39(5), 791–803 (1982).
[Crossref]

Deep Sea Res. Part I Oceanogr. Res. Pap. (1)

K. E. Brainerd and M. C. Gregg, “Surface mixed and mixing layer depths,” Deep Sea Res. Part I Oceanogr. Res. Pap. 42(9), 1521–1543 (1995).
[Crossref]

Deep-Sea Res. (2)

C. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Res. 13, 223–227 (1966).

T. Platt, “Local phytoplankton abundance and turbulence,” Deep-Sea Res. 19, 183–187 (1972).

Geophys. Res. Lett. (1)

R. M. Letelier, M. R. Abbott, and D. M. Karl, “Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean,” Geophys. Res. Lett. 24(4), 409–412 (1997).
[Crossref]

J. Atmos. Ocean. Technol. (1)

E. Organelli, H. Claustre, A. Bricaud, C. Schmechtig, A. Poteau, X. Xing, L. Prieur, F. D’Ortenzio, G. Dall’Olmo, and V. Vellucci, “A novel near-real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances,” J. Atmos. Ocean. Technol. 33(5), 937–951 (2016).
[Crossref]

J. Geophys. Res. (6)

K. S. Johnson, J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser, D. D. Swift, N. L. Williams, E. Boss, N. Haentjens, L. D. Talley, and J. L. Sarmiento, “Biogeochemical sensor performance in the SOCCOM profiling float array,” J. Geophys. Res. 122(8), 6416–6436 (2017).
[Crossref]

C. de Boyer Montégut, G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, “Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology,” J. Geophys. Res. 109(C12), C12003 (2004).
[Crossref]

H. Claustre, A. Morel, M. Babin, C. Cailliau, D. Marie, J.-C. Marty, D. Tailliez, and D. Vaulot, “Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: Scales, patterns, and biogeochemical implications,” J. Geophys. Res. 104(C2), 3401–3422 (1999).
[Crossref]

X. Xing, A. Morel, H. Claustre, D. Antoine, F. d’Ortenzio, A. Poteau, and A. Mignot, “Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval,” J. Geophys. Res. 116(C6), C06020 (2011).
[Crossref]

R. Sauzède, H. Claustre, C. Jamet, J. Uitz, J. Ras, A. Mignot, and F. d’Ortenzio, “Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications,” J. Geophys. Res. 120(1), 451–470 (2015).
[Crossref]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).
[Crossref]

J. Mar. Res. (2)

M. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006).
[Crossref]

J. Marra, “Analysis of diel variability in chlorophyll fluorescence,” J. Mar. Res. 55(4), 767–784 (1997).
[Crossref]

J. Phys. Oceanogr. (1)

A. Morel and D. Antoine, “Heating rate within the upper ocean in relation to its bio-optical state,” J. Phys. Oceanogr. 24(7), 1652–1665 (1994).
[Crossref]

Limnol. Oceanogr. (2)

E. Boss, D. Swift, L. Taylor, P. Brickley, R. Zaneveld, S. Riser, M. J. Perry, and P. G. Strutton, “Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite,” Limnol. Oceanogr. 53(5), 2112–2122 (2008).
[Crossref]

W. W. Gregg and K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).
[Crossref]

Limnol. Oceanogr. Methods (6)

C. Roesler, J. Uitz, H. Claustre, E. Boss, X. Xing, E. Organelli, N. Briggs, A. Bricaud, C. Schmechtig, A. Poteau, F. d’Ortenzio, J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors,” Limnol. Oceanogr. Methods 15(6), 572–585 (2017).
[Crossref]

J. R. Taylor and R. Ferrari, “Shutdown of turbulent convection as anew criterion for the onset of spring phytoplankton blooms,” Limnol. Oceanogr. Methods 56(6), 2293–2307 (2011).
[Crossref]

S. J. Thomalla, W. Moutier, T. J. Ryan-Keogh, L. Gregor, and J. Schütt, “An optimized method for correcting fluorescence quenching using optical backscattering on autonomous platforms,” Limnol. Oceanogr. Methods 16, 132–144 (2017).

C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence,” Limnol. Oceanogr. Methods 8, 695–708 (2010).

X. Xing, H. Claustre, E. Boss, C. Roesler, E. Organelli, A. Poteau, M. Barbieux, and F. d’Ortenzio, “Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter,” Limnol. Oceanogr. Methods 15(1), 80–93 (2017).
[Crossref]

X. Xing, H. Claustre, S. Blain, F. d’Ortenzio, D. Antoine, J. Ras, and C. Guinet, “Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean),” Limnol. Oceanogr. Methods 10(7), 483–495 (2012).
[Crossref]

Mar. Biol. (1)

D. A. Kiefer, “Chlorophyll a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrients stress,” Mar. Biol. 23(1), 39–46 (1973).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

O. Holm-Hansen, A. F. Amos, and C. D. Hewes, “Reliability of estimating chlorophyll-a concentrations in Antarctic waters by measurement of in situ chlorophyll-a fluorescence,” Mar. Ecol. Prog. Ser. 196, 103–110 (2000).
[Crossref]

Methods in Oceanography (1)

C. Roesler and A. H. Barnard, “Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height,” Methods in Oceanography 7, 79–94 (2013).
[Crossref]

Ocean Sci. (1)

L. Biermann, C. Guinet, M. Bester, A. Brierley, and L. Boehme, “An alternative method for correcting fluorescence quenching,” Ocean Sci. 11(1), 83–91 (2015).
[Crossref]

Remote Sens. Environ. (1)

A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007).
[Crossref]

Other (5)

C. Schmechtig, A. Poteau, H. Claustre, F. d’Ortenzio, G. Dall’Olmo, and E. Boss, “Processing Bio-Argo particle backscattering at the DAC level,” (2015).

J. Plant, personal communications (2017).

G. Monterey and S. Levitus, “Seasonal variability of mixed layer depth for the World Ocean,” NOAA Atlas NESDIS 14, US Gov. Printing Office, Wash., D.C., 96 pp. (1997).

IOCCG, “Bio-Optical Sensors on Argo Floats,” Reports of the International Ocean-Colour Coordinating Group, No. 11, H. Claustre, ed. (2011).

K. Johnson and H. Claustre, “The scientific rationale, design and Implementation Plan for a Biogeochemical-Argo float array,” (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Locations of BGC-Argo floats used in this study.
Fig. 2
Fig. 2 Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of median-filtered FChla values, taking the raw FChla as the reference, with the change of window size (from 3-point median to 19-point median) in DCM- (Panel a) and w/oDCM-Type (Panel b) waters, respectively. The dashed straight lines represent the linear regressed line between MAE/MAPE and the window size (from 13 to 19).
Fig. 3
Fig. 3 Analysis for ‘w/oDCM-Type’ waters: The variations of MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error, right y-axis) and MPE (Mean Percentage Error) at different MLD criteria (x-axis) and different ziPAR criteria (y-axis) for the S08 + (left) and X12 + (right) NPQ corrections.
Fig. 4
Fig. 4 Ratio of uncorrected FChla at noon to the reference vs. the noon iPAR value at the same depth (Panel a), as well as the corresponding P18 (Panel b), S08 (Panel c), X12 (Panel d), S08 + (Panel e) and X12 + ratios (Panel f), in the w/oDCM-Type waters. The colored curves represent the average values at the same iPAR, and dashed ones represent the standard deviations. The horizontal dashed lines represent the ratio = 1, and the vertical lines represent iPAR = 15 μmol quanta m−2 s−1, the numbers of points and profiles are listed in Table 2.
Fig. 5
Fig. 5 As same as Fig. 4, but for Deep-mixing DCM-Type (ziPAR15 ≤ MLD).
Fig. 6
Fig. 6 Panel a-d are as same as Fig. 4, but for shallow-mixing DCM-Type (ziPAR15 > MLD). Panel e shows the regressed sigmoid function between FChla ratio and iPAR, and Panel f shows the scatter plot of XB18

Tables (4)

Tables Icon

Table 1 Information related to BGC-Argo float data used in this study

Tables Icon

Table 2 Statistical results of all correction methods, taking the sunrise/sunset profiles as the reference.

Tables Icon

Table 3 The same as Table 2, but for low vertical resolution data.

Tables Icon

Table 4 Statistical results of all correction methods for floats without radiometry.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

FRatio=FChla/ b bp .
z MaxFRatio =z( FRatio=max( FRatio( zMLD ) ) ).
FRatio( z MaxFRatio )=max( FRatio( zMLD ) ).
S08( z )={ FRatio( z MaxFRatio )× b bp ( z ) ( z z MaxFRatio ) FChla( z ) (z> z MaxFRatio ) .
z MaxFluo =z( FChla =max( FChla( zMLD ) ) ).
FChla( z MaxFluo )=max( FChla( zMLD ) ).
X12( z )={ FChla( z MaxFluo ) ( z z MaxFluo ) FChla( z ) (z> z MaxFluo ) .
K d ( PAR )=0.0232+0.074× [ Chla ] 0.674 .
z eu =z( exp( 0 z K d ( PAR )dz )=0.01 ).
z P18 =z( FChla =max( FChla( zmin( MLD, z eu ) ) ) ).
FChla( z P18 )=max( FChla( zmin( MLD, z eu ) ) ).
P18( z )={ FChla( z P18 ) ( z z P18 ) FChla( z ) (z> z P18 ) .
z S08+ =z( FRatio =max( FRatio( zmin( MLD, z iPAR15 ) ) ) ).
FRatio( z S08+ )=max( FRatio( zmin( MLD, z iPAR15 ) ) ).
S08+( z )={ FRatio( z S08+ )× b bp ( z ) ( z z S08+ ) FChla( z ) (z> z S08+ ) .
z X12+ =z( FChla =max( FChla( zmin( MLD, z iPAR15 ) ) ) ).
FChla( z X12+ )=max( FChla( zmin( MLD, z iPAR15 ) ) ).
X12+( z )={ FChla( z X12+ ) ( z z X12+ ) FChla( z ) (z> z X12+ ) .
XB18( z )={ FChla( z )/( r+( 1r )/( 1+ ( iPAR( z )/iPA R mid ) e ) ) ( z10m ) XB18( z=10m ) (z<10m) .
MAE=  1 n i=1 n | P i A i |.
MAPE= 100 n i=1 n | P i A i | A i ( % ).
MPE=  100 n i=1 n ( P i A i ) A i  ( % ).
XB18( z )={ FChla( z )/( 0.092+0.908/( 1+ ( iPAR( z )/261 ) 2.2 ) ) ( z10m ) XB18( z=10m ) (z<10m) .
K d ( λ,z )= K w ( λ )+χ( λ ) [ Chla( λ,z ) ] e( λ ) .
E d ( λ,z )= E d ( λ, 0 )exp[ 0 z K d ( λ,z )dz ].
iPAR( z )= 400 700 λ hc E d ( λ,z )dλ .

Metrics