Abstract

Due to advantages of low dark-count rate, reduced dead-time, and room-temperature operation, single-photon upconversion detectors for the telecom band are gaining strong interest as an alternative to other single-photon counters. In this work, we investigate the spatial and spectral distribution of upconverted spontaneous parametric downconversion (USPDC) noise, which is the typical dominant noise source in short-wavelength-pumped single-photon upconversion detectors for 1.5 µm – 1.6 µm. Our upconversion detector relies on a bulk periodically poled lithium niobate (PPLN) crystal and a 1064 nm intracavity pump system that spectrally translates the signal to the visible (~630 nm) where efficient, uncooled, and low dark-count Si based single-photon detectors operate. Experimental results show that the spectral and spatial distribution of the USPDC noise has a relatively broadband and radially modulated pattern that depends on the PPLN temperature, which is in good agreement with our numerical simulations. We also demonstrate that for narrow-linewidth 1575 nm signal photons, the dark-count rate can be significantly reduced by (1) using a phase-matched signal angle that corresponds to an upconverted output angle where the USPDC noise is at a “local minimum” and (2) applying a spatial filter (instead of an ultra-narrow bandpass filter) at the output. This simple spatial filtering technique resulted in a 14 dB dark-count rate reduction. Due to a corresponding decrease in the interaction length of the signal with the pump, the upconversion efficiency also decreased, but only with a 2.2 dB penalty.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum detector tomography of a single-photon frequency upconversion detection system

Jianhui Ma, Xiuliang Chen, Huiqin Hu, Haifeng Pan, E Wu, and Heping Zeng
Opt. Express 24(18) 20973-20981 (2016)

SHG (532  nm)-induced spontaneous parametric downconversion noise in 1064-nm-pumped IR upconversion detectors

L. Meng, A. Padhye, C. Pedersen, M. Ebrahim-Zadeh, and P. J. Rodrigo
Opt. Lett. 44(7) 1670-1673 (2019)

Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer
Opt. Express 19(22) 21445-21456 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40(6), 938–941 (2015).
    [Crossref] [PubMed]
  2. L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
    [Crossref] [PubMed]
  3. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  4. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9-10), 1433–1445 (2004).
    [Crossref]
  5. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
    [Crossref]
  6. M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 µm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [Crossref] [PubMed]
  7. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express 19(22), 21445–21456 (2011).
    [Crossref] [PubMed]
  8. P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43(9), 2034–2037 (2018).
    [Crossref] [PubMed]
  9. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
    [Crossref] [PubMed]
  10. L. Meng, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects,” Opt. Express 25(13), 14783–14794 (2017).
    [Crossref] [PubMed]
  11. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett. 36(6), 864–866 (2011).
    [Crossref] [PubMed]
  12. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  13. C. Phillips, J. Pelc, and M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30(4), 982–993 (2013).
    [Crossref]
  14. S. Wolf, J. Kiessling, M. Kunz, G. Popko, K. Buse, and F. Kühnemann, “Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates,” Opt. Express 25(13), 14504–14515 (2017).
    [Crossref] [PubMed]
  15. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 µm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [Crossref] [PubMed]
  16. H. Pan and H. Zeng, “Efficient and stable single-photon counting at 1.55 µm by intracavity frequency upconversion,” Opt. Lett. 31(6), 793–795 (2006).
    [Crossref] [PubMed]
  17. A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
    [Crossref]
  18. T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
    [Crossref]

2018 (2)

2017 (2)

2015 (1)

2014 (1)

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

2013 (2)

2012 (2)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

2011 (2)

2006 (1)

2005 (1)

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

2004 (3)

Albota, M. A.

Bai, Y.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Buse, K.

Chang, D.

Chen, S.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Chulkova, G.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Dam, J. S.

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40(6), 938–941 (2015).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Fejer, M.

Fejer, M. M.

Fix, A.

Goltsman, G.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Høgstedt, L.

Johnson, W.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Kehlet, L. M.

Kiessling, J.

Kim, Y.-S.

Korneev, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Kühnemann, F.

Kunz, M.

Kuo, P. S.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9-10), 1433–1445 (2004).
[Crossref]

Langrock, C.

Ma, L.

Matvienko, V.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Meng, L.

Milostnaya, I.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Minaeva, O.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Pan, H.

Pearlman, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Pedersen, C.

Pelc, J.

Pelc, J. S.

Petros, M.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Phillips, C.

Phillips, C. R.

Popko, G.

Rodrigo, P. J.

Rubtsova, I.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Singh, U. N.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Slattery, O.

Slysz, W.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Smirnov, K.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Sobolewski, R.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Tang, X.

Tidemand-Lichtenberg, P.

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9-10), 1433–1445 (2004).
[Crossref]

Verevkin, A.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Voronov, V.

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

Wirth, M.

Wolf, S.

Wong, F. N.

Wong, F. N. C.

Wong, T.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Yu, J.

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Zeng, H.

Zhang, Q.

IEEE Trans. Appl. Supercond. (1)

A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Quantum Efficiency and Noise Equivalent Power of Nanostructured, NbN, Single-Photon Detectors in the Wavelength Range From Visible to Infrared,” IEEE Trans. Appl. Supercond. 15(2), 571–574 (2005).
[Crossref]

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51(9-10), 1433–1445 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Eng. (1)

T. Wong, J. Yu, Y. Bai, W. Johnson, S. Chen, M. Petros, and U. N. Singh, “Sensitive infrared signal detection by upconversion technique,” Opt. Eng. 53(10), 107102 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rep. (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep. 521(2), 69–94 (2012).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Supplementary Material (2)

NameDescription
» Visualization 1       Experimental result showing the upconverted spontaneous parametric downconversion noise pattern at different PPLN temperatures.
» Visualization 2       Simulation result showing the upconverted spontaneous parametric downconversion noise pattern at different PPLN temperatures.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for the USPDC ring pattern observation and three images taken by the camera for three different PPLN crystals at the same operating temperature T = 50 °C. M, mirrors; LD, laser diode. The BP filter set contain a 600 nm long-pass filter, a 650 nm short-pass filter, and a bandpass filter with a central wavelength of 635 nm and a FWHM = 10 nm. The scale on top of the images indicates the angle θext corresponding to a lateral position on the image. Diffraction patterns caused by dust particles on the filter are visible on the image.
Fig. 2
Fig. 2 Intensity profiles of the USPDC noise for PPLN 1 crystal operating at different temperatures (see Visualization 1).
Fig. 3
Fig. 3 k-vectors for the phase mismatched but parasitic SPDC process (red dotted region) followed by the quasi-phase-matched upconversion process (blue dotted region).
Fig. 4
Fig. 4 (a) SPDC and (b) USPDC given by the simulation results. (c) Angular profile of the USPDC noise and the corresponding spectrum |Gkd)|2 of the simulated poling structure.
Fig. 5
Fig. 5 Simulation results showing the USPDC pattern using crystal parameters specified for PPLN 1 operating at different temperatures considering the 45% (at 635 nm) quantum efficiency of the EM-CCD camera (see Visualization 2).
Fig. 6
Fig. 6 Experimental setup for single-photon detection based on short-wavelength-pumped UCD. SPC, single-photon counter (Si based); LD, laser diode; BP, bandpass filter set.
Fig. 7
Fig. 7 (a) PPLN crystal temperature versus the corresponding optimal IR signal angle ϕ. The red square is the experimental result and the black curve is the numerical simulation given by the QPM condition. Due to slight discrepancy introduced by the Sellmeier equations, a small offset of 1.2 °C is used in the simulated results in order to fit with the experimental one. (b) SCR and (c) DCR measured at different operating temperatures of the PPLN crystal.
Fig. 8
Fig. 8 USPDC pattern for PPLN 1 operating at temperature of 65 °C and 140 °C. The overlay plots show λs as a function of θext. The blue dash circles indicate the areas from which to collect the upconverted signal.

Tables (1)

Tables Icon

Table 1 Efficiency characterization

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E s dz = K s g(z) E i exp(i k d z)+ K up g(z) E up exp(i k up z), d E i dz = K i g(z) E s exp(i k d z) d E up dz = K up g(z) E s exp(i k up z)
K j = 2i ω j d eff n j c E p , j=s, i, and up Δ k up = k up (1 θ 2 2 ) k s (1 ϕ 2 2 ) k p = k up k s k p +( k s k s 2 k up ) ϕ 2 2 , Δ k d = k p k i (1 ψ 2 2 ) k s (1 ϕ 2 2 )= k p k s k i +( k s + k s 2 k i ) ϕ 2 2 g(z)={ 1 odd domain 1 even domain
Δ k up ( λ s ,ϕ)=2π/Λ.
P USPDC (θ) I SPDC ( λ s ,ϕ) η up ( λ s ,ϕ) d λ s = I SPDC ( λ s ,ϕ)η(ϕ)δ(Δ k up 2π/Λ) d λ s . =η(ϕ) I SPDC (Δ k up =2π/Λ,ϕ)
NEP= ω s 2DCR / η tot

Metrics