Abstract

Low-loss surface channel waveguides with a cross-section of 30 × 30 μm2 are produced by diamond saw dicing of 6.2 at.% Tm3+, 3.5 at.% Gd3+:LiYF4 films grown by liquid phase epitaxy (LPE) on (001)-oriented bulk undoped LiYF4 substrates. Pumped by a Ti:Sapphire laser at 783 nm, a continuous-wave Tm:LiYF4 waveguide laser generated 1.30 W at 1880 nm (for π-polarization) with a slope efficiency of 80% with respect to the absorbed pump power. The laser threshold was at 80 mW. The waveguide morphology was studied revealing low roughness (3 ± 2 μm) as expressed by the propagation losses of <0.3 dB/cm. A combination of LPE and diamond saw dicing is a promising technology for multi-watt single-mode channel waveguide lasers and amplifiers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Diamond saw dicing of thulium channel waveguide lasers in monoclinic crystalline films

Esrom Kifle, Pavel Loiko, Uwe Griebner, Valentin Petrov, Patrice Camy, Alain Braud, Magdalena Aguiló, Francesc Díaz, and Xavier Mateos
Opt. Lett. 44(7) 1596-1599 (2019)

Laser operation of highly-doped Tm:LiYF4 epitaxies: towards thin-disk lasers

Rémi Soulard, Mohamed Salhi, Gurvan Brasse, Pavel Loiko, Jean-Louis Doualan, Lauren Guillemot, Alain Braud, Aleksey Tyazhev, Ammar Hideur, and Patrice Camy
Opt. Express 27(6) 9287-9301 (2019)

In-band pumping of Tm:LiYF4 channel waveguide: a power scaling strategy for ∼2  μm waveguide lasers

Pavel Loiko, Romain Thouroude, Rémi Soulard, Lauren Guillemot, Gurvan Brasse, Blandine Guichardaz, Alain Braud, Ammar Hideur, Mathieu Laroche, Hervé Gilles, and Patrice Camy
Opt. Lett. 44(12) 3010-3013 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
    [Crossref] [PubMed]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Ed. (Intech, 2010, pp. 471–500).
  3. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
    [Crossref]
  4. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  5. S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
    [Crossref]
  6. M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
    [Crossref]
  7. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
    [Crossref]
  8. P. Loiko, J. M. Serres, X. Mateos, S. Tacchini, M. Tonelli, S. Veronesi, D. Parisi, A. Di Lieto, K. Yumashev, U. Griebner, and V. Petrov, “Comparative spectroscopic and thermo-optic study of Tm:LiLnF4 (Ln = Y, Gd, and Lu) crystals for highly-efficient microchip lasers at ~2 μm,” Opt. Mater. Express 7(3), 844–854 (2017).
    [Crossref]
  9. A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
    [Crossref]
  10. W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
    [Crossref] [PubMed]
  11. W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 µm,” Opt. Express 19(2), 1449–1454 (2011).
    [Crossref] [PubMed]
  12. K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
    [Crossref] [PubMed]
  13. J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
    [Crossref]
  14. J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
    [Crossref]
  15. D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
    [Crossref] [PubMed]
  16. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  17. E. Kifle, P. Loiko, X. Mateos, J. R. V. de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: µ-Raman study and laser operation,” Opt. Mater. Express 7(12), 4258–4268 (2017).
    [Crossref]
  18. N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
    [Crossref] [PubMed]
  19. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
    [Crossref]
  20. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref] [PubMed]
  21. F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
    [Crossref]
  22. N. P. Barnes and D. J. Gettemy, “Temperature variation of the refractive indices of yttrium lithium fluoride,” J. Opt. Soc. Am. 70(10), 1244–1247 (1980).
    [Crossref]
  23. O. V. Ivanova, R. Stoffer, and M. Hammer, “A variational mode solver for optical waveguides based on quasi-analytical vectorial slab mode expansion,” University of Twente, technical report (2009, pp. 1–19).
  24. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  25. J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
    [Crossref] [PubMed]
  26. I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
    [Crossref]
  27. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
    [Crossref]
  28. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
    [Crossref]
  29. A. Choudhary, P. Kannan, J. I. Mackenzie, X. Feng, and D. P. Shepherd, “Ion-exchanged Tm3+:glass channel waveguide laser,” Opt. Lett. 38(7), 1146–1148 (2013).
    [Crossref] [PubMed]
  30. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [Crossref] [PubMed]
  31. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  32. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
    [Crossref]
  33. B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
    [Crossref]
  34. O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
    [Crossref] [PubMed]

2017 (4)

2016 (1)

2014 (2)

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (4)

2008 (2)

2006 (1)

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

2005 (1)

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

2002 (1)

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

2001 (1)

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

2000 (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

1999 (1)

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
[Crossref]

1997 (1)

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

1996 (1)

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

1995 (1)

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

1994 (1)

1990 (1)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1980 (1)

1976 (1)

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Aguiló, M.

Ams, M.

Aravazhi, S.

Auzel, F.

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Baiocco, C.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
[Crossref]

N. P. Barnes and D. J. Gettemy, “Temperature variation of the refractive indices of yttrium lithium fluoride,” J. Opt. Soc. Am. 70(10), 1244–1247 (1980).
[Crossref]

Beach, R. J.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Beecher, S.

Benayad, A.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Bernal, M.-P.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Betterton, J. G.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Bolanos, W.

Bolaños, W.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 µm,” Opt. Express 19(2), 1449–1454 (2011).
[Crossref] [PubMed]

Bookey, H. T.

Borel, C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Borowiec, M. T.

Bowman, S. R.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

Bradley, J. D. B.

Brasse, G.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Braud, A.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Brinck, D. J. B.

Brown, C. T. A.

Brown, G.

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Callahan, P. T.

Camy, P.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Cantelar, E.

Carvajal, J. J.

Chambaz, B.

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chen, F.

Chicklis, E. P.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Choudhary, A.

Clarkson, W. A.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Couchaud, M.

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Crawford, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

Cussó, F.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Dawson, M. D.

de Aldana, J. R. V.

De Sandro, J. P.

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
[Crossref]

Di Lieto, A.

Díaz, F.

Doualan, J. L.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

Doualan, J.-L.

Ebendorff-Heidepriem, H.

Esterowitz, L.

Feng, X.

Ferrand, B.

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Fuerbach, A.

Ganem, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

García-Blanco, S. M.

Geskus, D.

Gettemy, D. J.

Gorton, E. K.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Grau, J.

Griebner, U.

Grivas, C.

Gross, S.

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Gutowska, M. U.

Hanna, D. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref] [PubMed]

Heidepriem, H. E.

Hempstead, M.

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Hopkins, J.-M.

Ippen, E. P.

Jenkins, N. W.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

Jones, J. K.

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

Kakarantzas, G.

Kannan, P.

Kar, A. K.

Kärtner, F. X.

Kifle, E.

Kip, D.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuan, K.

Lagatsky, A. A.

Lancaster, D. G.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Li, N.

Lifante, G.

Loiko, P.

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Mackenzie, J. I.

A. Choudhary, P. Kannan, J. I. Mackenzie, X. Feng, and D. P. Shepherd, “Ion-exchanged Tm3+:glass channel waveguide laser,” Opt. Lett. 38(7), 1146–1148 (2013).
[Crossref] [PubMed]

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Massons, J.

Massot, M.

Mateos, X.

Meissner, H. E.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Ménard, V.

Mironov, D.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Mitchell, S. C.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Moncorgé, R.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Monro, T. M.

Morales, M.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

Morris, J.

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Murugan, G. S.

Nikitichev, A.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Panyutin, V. L.

Parisi, D.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Pernas, P. L.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Petrov, V.

Pollnau, M.

Pujol, M. C.

Purnawirman, P.

Rameix, A.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Razumova, I.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Ren, Y.

Ródenas, A.

Ruocco, A.

Rüter, C. E.

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Salazar, A.

Salih Magden, E.

Sanz-García, J. A.

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Schellhorn, M.

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

Schmidt, P.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

Serres, J. M.

Sheperd, D. P.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Shepherd, D. P.

A. Choudhary, P. Kannan, J. I. Mackenzie, X. Feng, and D. P. Shepherd, “Ion-exchanged Tm3+:glass channel waveguide laser,” Opt. Lett. 38(7), 1146–1148 (2013).
[Crossref] [PubMed]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref] [PubMed]

Shtyrkova, K.

Silvestre, O.

So, S.

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Starecki, F.

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

Stevenson, N. K.

Stoneman, R. C.

Su, Z.

Suntsov, S.

Szewczyk, A.

Tacchini, S.

Tkachuk, A.

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

Tonelli, M.

Townsend, P. D.

Tropper, A. C.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref] [PubMed]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

van Dalfsen, K.

Vermeulen, D.

Veronesi, S.

Volk, M. F.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
[Crossref]

Wang, J.

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref] [PubMed]

Warburton, T. J.

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Watts, M. R.

Wilkinson, J. S.

Withford, M. J.

Wörhoff, K.

Xin, M.

Yumashev, K.

Appl. Phys. B (2)

S. So, J. I. Mackenzie, D. P. Sheperd, W. A. Clarkson, J. G. Betterton, and E. K. Gorton, “A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers,” Appl. Phys. B 84(3), 389–393 (2006).
[Crossref]

M. Schellhorn, “High-power diode-pumped Tm:YLF laser,” Appl. Phys. B 91(1), 71–74 (2008).
[Crossref]

Appl. Phys. Lett. (1)

E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarized Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005).
[Crossref]

Electron. Lett. (1)

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 μm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. P. De Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-indiffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photonics Technol. Lett. 8(2), 209–211 (1996).
[Crossref]

J. Alloys Compd. (1)

I. Razumova, A. Tkachuk, A. Nikitichev, and D. Mironov, “Spectral-luminescent properties of Tm:YLF crystal,” J. Alloys Compd. 225(1–2), 129–132 (1995).
[Crossref]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 3(5), 2772–2787 (1998).
[Crossref]

J. Cryst. Growth (1)

F. Starecki, W. Bolaños, G. Brasse, A. Benayad, M. Morales, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Rare earth doped LiYF4 single crystalline films grown by liquid phase epitaxy for the fabrication of planar waveguide lasers,” J. Cryst. Growth 401, 537–541 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys. 44(30), 305101 (2011).
[Crossref]

Opt. Commun. (1)

A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Shepherd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient, diode-pumped, 2 μmTm:YAG waveguide laser,” Opt. Commun. 142(4–6), 239–243 (1997).
[Crossref]

Opt. Express (6)

W. Bolaños, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 µm,” Opt. Express 19(2), 1449–1454 (2011).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, D. Geskus, K. Wörhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19(6), 5277–5282 (2011).
[Crossref] [PubMed]

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
[Crossref] [PubMed]

J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9 µm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25(13), 14910–14917 (2017).
[Crossref] [PubMed]

O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

Opt. Lett. (8)

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

N. Li, P. Purnawirman, Z. Su, E. Salih Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42(6), 1181–1184 (2017).
[Crossref] [PubMed]

A. Choudhary, P. Kannan, J. I. Mackenzie, X. Feng, and D. P. Shepherd, “Ion-exchanged Tm3+:glass channel waveguide laser,” Opt. Lett. 38(7), 1146–1148 (2013).
[Crossref] [PubMed]

W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J.-L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
[Crossref] [PubMed]

D. P. Shepherd, D. J. B. Brinck, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-microm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19(13), 954–956 (1994).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
[Crossref] [PubMed]

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15(9), 486–488 (1990).
[Crossref] [PubMed]

Opt. Mater. (1)

B. Ferrand, B. Chambaz, and M. Couchaud, “Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media,” Opt. Mater. 11(2–3), 101–114 (1999).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (2)

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[Crossref]

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Other (2)

O. V. Ivanova, R. Stoffer, and M. Hammer, “A variational mode solver for optical waveguides based on quasi-analytical vectorial slab mode expansion,” University of Twente, technical report (2009, pp. 1–19).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, Ed. (Intech, 2010, pp. 471–500).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Photograph of the as-grown 7 at.% Tm, 5 at.% Gd:LiYF4 / LiYF4 epitaxy; (b) segregation coefficients of RE3+ ions in LiYF4 thin films KRE vs. the ratio of ionic radii, RRE/RY.
Fig. 2
Fig. 2 Confocal laser microscopy images of diamond saw diced Tm:LiYF4 channel WGs: (a,b) top view; (c,d) end-facet view, λ = 405 nm. White line in (c) – the layer / substrate interface.
Fig. 3
Fig. 3 (a) Measured refractive indices ne of bulk LiYF4 substrate and 9 at.% Tm, 5 at.% Gd:LiYF4 active layer (batch composition) – circles, calculated dispersion adopting the Sellmeier formula for bulk LiYF4 by Barnes et al. [22] – black curve, and fit for the active layer – blue curve; (b) Mode guidance condition analysis at 1.880 μm for a square Tm:LiYF4 channel WG using [23] (five first TM modes are considered).
Fig. 4
Fig. 4 (a) Scheme of the Tm:LiYF4channel WG laser: P – Glan-Taylor polarizer, PM – pump mirror, OC – output coupler, F –cut-off filter; (b) top-view photograph of the WG laser.
Fig. 5
Fig. 5 Tm:LiYF4 channel WG laser: (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra measured at Pabs ~1.5 W (for TOC = 2 - 50%) and 0.5 W (without OC).
Fig. 6
Fig. 6 Gain cross-section, σg = βσSE – (1 – β)σabs, spectra for the 3F43H6 transition of Tm3+ions in LiYF4. The light polarization is π. β = N2(3F4)/NTm is the inversion ratio.
Fig. 7
Fig. 7 Caird plot for the Tm:LiYF4 channel WG laser: inverse of the slope efficiency η vs. inverse of the output-coupling loss γOC = –ln(1–TOC).
Fig. 8
Fig. 8 (a) Measured far-field profile of the laser mode from the Tm:LiYF4 channel WG laser. The laser polarization (π) is vertical; (b) calculated intensity profile of the TM00 mode.
Fig. 9
Fig. 9 (a) Simplified scheme of the energy-levels of Tm3+ ions in LiYF4 showing relevant processes (CR – cross-relaxation, black arrows – radiative decay, NR – non-radiative relaxation, ETU – energy-transfer upconversion); (b) measured (circles & their linear fit – black line) and calculated (dashedred curve – constant WCR, solid red curve – increasing WCR) output power vs. the incident pump power for the Tm:LiYF4 channel WG laser, TOC = 50%.

Tables (1)

Tables Icon

Table 1 Output Characteristics of Some Thulium Channel Waveguide Lasers Reported So Far

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N 2 dt =2 C CR N 1 N 3 2 K ETU N 2 2 N 2 τ 2 + β 32 N 3 τ 30 ( σ SE L N 2 σ abs L N 1 ) I L ,
d N 3 dt = σ abs P N 1 I P C CR N 1 N 3 N 3 τ 30 + K ETU N 2 2 ,
P out = T OC I L + (r)h ν L 2πrdr.
W CR (T)= W CR0 (1+ n ph ) N e ,
n ph = ( e (h ν ph )/(kT) 1) 1 .

Metrics