Abstract

A hybrid integration of nanoporous gold with silicon nitride waveguide has been realized for surface-enhanced Raman spectroscopy (SERS) at 633-nm wavelength. The SERS signal is excited through 580-nm-thick T-shape suspended waveguides and collected through an objective lens. Raman spectra for different mesa width at either transverse electric (TE) or transverse magnetic (TM) mode are measured and compared. The localized surface plasmon resonance of the nanoporous gold can result in a waveguide and polarization-dependent SERS enhancement. The presented miniaturized SERS chips can work from visible to near-infrared wavelength and a wide application prospect could be expected.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides

Pieter C. Wuytens, Andre G. Skirtach, and Roel Baets
Opt. Express 25(11) 12926-12934 (2017)

Surface-enhanced Raman scattering sensor based on hybrid deep slot waveguide on an integrated photonic platform

Shiyu Li, Li Xia, Xin Chen, Zhao Yang, and Wei Li
J. Opt. Soc. Am. B 36(9) 2423-2428 (2019)

Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film

Xiangxian Wang, Xuelin Bai, Zhiyuan Pang, Jiankai Zhu, Yuan Wu, Hua Yang, Yunping Qi, and Xiaolei Wen
Opt. Mater. Express 9(4) 1872-1881 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
    [Crossref] [PubMed]
  4. A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
    [Crossref] [PubMed]
  5. Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
    [Crossref] [PubMed]
  6. C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
    [Crossref]
  7. S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
    [Crossref]
  8. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
    [Crossref]
  9. L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
    [Crossref] [PubMed]
  10. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
    [Crossref] [PubMed]
  11. R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
    [Crossref] [PubMed]
  12. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  13. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  14. K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
    [Crossref] [PubMed]
  15. J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
    [Crossref]
  16. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  17. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
    [Crossref]
  18. J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
    [Crossref]
  19. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
    [Crossref]
  20. J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
    [Crossref]
  21. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [Crossref] [PubMed]
  22. M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
    [Crossref]
  23. A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
    [Crossref] [PubMed]
  24. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
    [Crossref] [PubMed]
  25. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
    [Crossref]
  26. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref] [PubMed]
  27. P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
    [Crossref] [PubMed]
  28. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]

2017 (4)

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref] [PubMed]

2016 (4)

S. A. Holmstrom, T. H. Stievater, D. A. Kozak, M. W. Pruessner, N. Tyndall, W. S. Rabinovich, R. A. Mcgill, and J. B. Khurgin, “Trace-gas Raman spectroscopy using functionalized waveguides,” Optica 3(8), 891–896 (2016).
[Crossref]

Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

2015 (4)

J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]

J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]

L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
[Crossref] [PubMed]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
[Crossref] [PubMed]

2014 (4)

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref] [PubMed]

2013 (3)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

2012 (3)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

2009 (1)

2007 (1)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Adibi, A.

Akimoto, R.

J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]

J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Atabaki, A. H.

Baets, R.

P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref] [PubMed]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

Bartlett, P. N.

Barton, J. S.

Bauters, J. F.

Bernal Arango, F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Blumenthal, D. J.

Bowers, J. E.

Bruinink, C. M.

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Chamanzar, M.

Chan, J. W.

Chen, B.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Chen, C.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Cordovez, B.

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Dhakal, A.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dorpe, P. V.

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

Earhart, C. M.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Evans, C. C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Feng, J.

J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]

J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Guan, B.

Hawkins, A. R.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Holmstrom, S. A.

Hosseini, E. S.

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

John, D. D.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Khurgin, J. B.

Koenderink, A. F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Kong, L.

Kozak, D. A.

Kwadrin, A.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Lagae, L.

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

Le Thomas, N.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

Lee, C.

Leinse, A.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Liu, C.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Liu, G.

Lunt, E. J.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Mahmudulhasan, M.

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

Mcgill, R. A.

Measor, P.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Neutens, P.

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Olin, H.

R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref] [PubMed]

Pathak, S.

Peyskens, F.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Pruessner, M. W.

Rabinovich, W. S.

Raza, A.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Schmidt, H.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Shang, K.

Skirtach, A. G.

Soltani, M.

Stievater, T. H.

Subramanian, A. Z.

Suntivich, J.

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Tyndall, N.

Van Dorpe, P.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Vos, R.

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

Wang, Z.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Z. Wang, M. N. Zervas, P. N. Bartlett, and J. S. Wilkinson, “Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy,” Opt. Lett. 41(17), 4146–4149 (2016).
[Crossref] [PubMed]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wilkinson, J. S.

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wuytens, P.

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

A. Dhakal, A. Z. Subramanian, P. Wuytens, F. Peyskens, N. Le Thomas, and R. Baets, “Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides,” Opt. Lett. 39(13), 4025–4028 (2014).
[Crossref] [PubMed]

Wuytens, P. C.

Xia, Z.

Yang, M.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yegnanarayanan, S.

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Yoo, S. J. B.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zeng, H.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Zervas, M. N.

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

Zhang, L.

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Zhang, R.

R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

ACS Nano (1)

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

ACS Photonics (3)

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

M. Mahmudulhasan, P. Neutens, R. Vos, L. Lagae, and P. V. Dorpe, “Suppression of bulk fluorescence noise by combining waveguide-based near-field excitation and collection,” ACS Photonics 4(3), 495–500 (2017).
[Crossref]

C. C. Evans, C. Liu, and J. Suntivich, “TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy,” ACS Photonics 3(9), 1662–1669 (2016).
[Crossref]

Appl. Phys. Lett. (2)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[Crossref]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Feng and R. Akimoto, “T-shape suspended silicon nitride ring resonator for optical sensing applications,” IEEE Photonics Technol. Lett. 27(15), 1601–1604 (2015).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Feng and R. Akimoto, “Silicon nitride polarizing beam splitter with potential application for intersubband-transition-based all-optical gate device,” Jpn. J. Appl. Phys. 54(4), 04DG08 (2015).
[Crossref]

Lab Chip (1)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Materials (Basel) (2)

R. Zhang and H. Olin, “Porous gold films-a short review on recent progress,” Materials (Basel) 7(5), 3834–3854 (2014).
[Crossref] [PubMed]

A. Dhakal, P. Wuytens, A. Raza, N. Le Thomas, and R. Baets, “Silicon nitride background in nanophotonic waveguide enhanced Raman spectroscopy,” Materials (Basel) 10(2), 140–152 (2017).
[Crossref] [PubMed]

Nano Lett. (1)

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett. 13(2), 559–563 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

M. Yang, L. Zhang, B. Chen, Z. Wang, C. Chen, and H. Zeng, “Silver nanoparticles decorated nanoporous gold for surface-enhanced Raman scattering,” Nanotechnology 28(5), 055301 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (1)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Opt. Express (6)

L. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
[Crossref] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

P. C. Wuytens, A. G. Skirtach, and R. Baets, “On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides,” Opt. Express 25(11), 12926–12934 (2017).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of the fabrication process. (b) Microscope image of the fabricated chip with suspended waveguide. (c) Microscope image of the NPG film integrated chip under test (bright spot at chip edge indicates the input light).
Fig. 2
Fig. 2 SEM images of the fabricated chip (a) before and after (b) covering the NPG film.
Fig. 3
Fig. 3 Schematic of the confocal microscope used for collecting the scattered light from both waveguide and free-space coupled NPG film.
Fig. 4
Fig. 4 SERS spectra for the reference Si3N4 waveguide (black), free-space coupled NPG film (red), and waveguide coupled case at TE (blue) and TM (green) polarization.
Fig. 5
Fig. 5 Measured spectra for waveguide coupled SERS with different width at (a) TM and (b) TE polarization.
Fig. 6
Fig. 6 (a) Simulated light coupling efficiency from free-space to waveguide. (b) Corresponding mode confinement for the suspended waveguide with varying width. Inset shows the mode profiles of a 2-μm-wide waveguide with 100-nm NPG for TE and TM mode.
Fig. 7
Fig. 7 Normalized relative spectra with considering the coupling loss, insertion loss and the propagation loss for (a) TM and (b) TE mode, respectively.

Metrics