Abstract

We report the influence of polarization on the damage mechanism of oxide thin films submitted to multiple pulses in the sub-picosecond regime. We have exposed single layer coatings of oxide materials and multilayer stacks (mirrors) to multiple laser pulses at 1030nm, 500fs, and the events on the tested sample sites were recorded in situ with high resolution microscopy. For multiple shots while keeping the fluence below the single shot threshold, damage on the film begins to form and for some of the samples the damage growth follows polarization dependent patterns. This damage growth was investigated and our results match with the assumption that the existence of nano-defects contributes to the early stage of the formation of damage, in which the energy absorption in a defect site causes local nanoablation at a laser fluence under the intrinsic ablation threshold and nanovoid formation. Based on the simulation of the interference of the scattered wave by the nanovoid with the incident wave, we obtain good correlation between simulated and observed damage growth behavior. This process leads to the formation of specific damage morphology that is strongly dependent on the polarization of the incident wave.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser damage growth with picosecond pulses

Martin Sozet, Jérôme Neauport, Eric Lavastre, Nadja Roquin, Laurent Gallais, and Laurent Lamaignère
Opt. Lett. 41(10) 2342-2345 (2016)

Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range

Laurent Gallais, Benoît Mangote, Myriam Zerrad, Mireille Commandré, Andrius Melninkaitis, Julius Mirauskas, Maksim Jeskevic, and Valdas Sirutkaitis
Appl. Opt. 50(9) C178-C187 (2011)

Investigation of processes leading to damage growth in optical materials for large-aperture lasers

Stavros G. Demos, Mike Staggs, and Mark R. Kozlowski
Appl. Opt. 41(18) 3628-3633 (2002)

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  2. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [Crossref] [PubMed]
  3. J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
    [Crossref]
  4. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
    [Crossref] [PubMed]
  5. J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).
  6. H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).
  7. M. Sozet, S. Bouillet, J. Berthelot, J. Neauport, L. Lamaignère, and L. Gallais, “Sub-picosecond laser damage growth on high reflective coatings for high power applications,” Opt. Express 25, 25767–25781 (2017).
    [Crossref] [PubMed]
  8. A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).
  9. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [Crossref]
  10. M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
    [Crossref]
  11. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [Crossref]
  12. R. M. Wood, Laser-Induced Damage of Optical Materials (IOP Publishing Ltd, 2003).
    [Crossref]
  13. D. Ristau, Laser-Induced Damage in Optical Materials (CRC, 2014).
    [Crossref]
  14. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014).
    [Crossref]
  15. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [Crossref]
  16. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
    [Crossref] [PubMed]
  17. I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
    [Crossref] [PubMed]
  18. E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
    [Crossref]
  19. S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
    [Crossref]
  20. E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (CRC, 2011).
  21. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [Crossref]
  22. A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).
  23. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP. 20, 1307 (1965).
  24. T. A. Laurence, R. A. Negres, S. Ly, N. Shen, C. W. Carr, D. A. Alessi, A. Rigatti, and J. D. Bude, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II. Scaling laws and the density of precursors,” Opt. Express 25, 15381 (2017).
    [Crossref] [PubMed]
  25. W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
    [Crossref]
  26. S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
    [Crossref]
  27. D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
    [Crossref]
  28. L. Gallais and M. Commandré, “Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs,” Appl. Opt. 53, A186–A196 (2014).
    [Crossref] [PubMed]
  29. L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
    [Crossref]
  30. T. A. Wiggins and R. S. Reid, “Observation and morphology of small-scale laser induced damage,” Appl. Opt. 21, 1675–1680 (1982).
    [Crossref] [PubMed]
  31. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref] [PubMed]
  32. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
    [Crossref] [PubMed]
  33. S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,” Opt. Express 25, 15161–15178 (2017).
    [Crossref] [PubMed]
  34. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
    [Crossref]
  35. J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
    [Crossref]
  36. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
    [Crossref]
  37. A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
    [Crossref] [PubMed]
  38. H. Shimizu, S. Yada, G. Obara, and M. Terakawa, “Contribution of defect on early stage of LIPSS formation,” Opt. Express 22, 17990–17998 (2014).
    [Crossref] [PubMed]
  39. K. R. P. Kafka, N. Talisa, G. Tempea, D. R. Austin, C. Neascu, and E. A. Chowdhury, “Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics,” Opt. Express 24, 28858–28868 (2016).
    [Crossref] [PubMed]
  40. M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
    [Crossref]
  41. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
    [Crossref]
  42. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21, 26323 (2013).
    [Crossref] [PubMed]
  43. “Lasers and laser-related equipment: test methods for laser-induced damage threshold,” ISO Standard Nos. 21254–1–21254–4 (2011).
  44. L. Gallais and J. Y. Natoli, “Optimized metrology for laser damage measurement - Application to multiparameter study,” Appl. Opt. 42, 960 (2003).
    [Crossref] [PubMed]
  45. A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
    [Crossref]
  46. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
    [Crossref]
  47. M. Sozet, J. Neauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignere, “Laser damage density measurement of optical components in the sub-picosecond regime,” Opt. Lett. 40, 2091 (2015).
    [Crossref] [PubMed]
  48. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
    [Crossref]
  49. COMSOL Multiphysics, “Wave-optics-module,” https://www.comsol.com/wave-optics-module .
  50. R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
    [Crossref]
  51. M. Chorel, T. Lanternier, E. Lavastre, N. Bonod, B. Bousquet, and J. Neauport, “Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers,” Opt. Express 26, 11764 (2016).
    [Crossref]

2017 (6)

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,” Opt. Express 25, 15161–15178 (2017).
[Crossref] [PubMed]

T. A. Laurence, R. A. Negres, S. Ly, N. Shen, C. W. Carr, D. A. Alessi, A. Rigatti, and J. D. Bude, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II. Scaling laws and the density of precursors,” Opt. Express 25, 15381 (2017).
[Crossref] [PubMed]

M. Sozet, S. Bouillet, J. Berthelot, J. Neauport, L. Lamaignère, and L. Gallais, “Sub-picosecond laser damage growth on high reflective coatings for high power applications,” Opt. Express 25, 25767–25781 (2017).
[Crossref] [PubMed]

2016 (5)

M. Chorel, T. Lanternier, E. Lavastre, N. Bonod, B. Bousquet, and J. Neauport, “Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers,” Opt. Express 26, 11764 (2016).
[Crossref]

K. R. P. Kafka, N. Talisa, G. Tempea, D. R. Austin, C. Neascu, and E. A. Chowdhury, “Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics,” Opt. Express 24, 28858–28868 (2016).
[Crossref] [PubMed]

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

2015 (2)

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

M. Sozet, J. Neauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignere, “Laser damage density measurement of optical components in the sub-picosecond regime,” Opt. Lett. 40, 2091 (2015).
[Crossref] [PubMed]

2014 (6)

L. Gallais and M. Commandré, “Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs,” Appl. Opt. 53, A186–A196 (2014).
[Crossref] [PubMed]

H. Shimizu, S. Yada, G. Obara, and M. Terakawa, “Contribution of defect on early stage of LIPSS formation,” Opt. Express 22, 17990–17998 (2014).
[Crossref] [PubMed]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014).
[Crossref]

2013 (2)

2010 (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

2009 (2)

2008 (1)

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

2006 (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

2003 (2)

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser damage measurement - Application to multiparameter study,” Appl. Opt. 42, 960 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[Crossref]

1997 (1)

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

1996 (2)

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

1994 (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref] [PubMed]

1989 (1)

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

1982 (1)

1981 (1)

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

1976 (1)

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

1972 (1)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[Crossref]

1965 (2)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP. 20, 1307 (1965).

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Adams, D. P.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

Alessi, D. A.

Austin, D. R.

Bataviciute, G.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Bercegol, H.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Berthelot, J.

Bertussi, B.

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[Crossref]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

Bonod, N.

Bonse, J.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Boscheron, A.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Bouillet, S.

Bousquet, B.

Braunlich, P.

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[Crossref]

Bude, J. D.

Bulgakova, N. M.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Bumpas, S. E.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Campbell, J. H.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Carr, C. W.

Casper, R. T.

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Chériaux, G.

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).

Chorel, M.

Chowdhury, E. A.

Chowdhury, E.A.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Colombier, J. P.

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Commandré, M.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

L. Gallais and M. Commandré, “Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs,” Appl. Opt. 53, A186–A196 (2014).
[Crossref] [PubMed]

Cormont, P.

Cupal, J.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Daly, M.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Delaporte, P.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Demos, S.

Demos, S. G.

DiNicola, J. M.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Douti, D. B.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Durák, M.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

Enami, T.

Epifanov, A. S.

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Fekete, L.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Fujimoto, J.

Gallais, L.

Gamaly, E. G.

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (CRC, 2011).

Golasowski, J.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Grojo, D.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Haderka, O.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

He, S.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Heggins, D. D.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

Hervy, A.

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).

Höhm, S.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Holstein, T.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Hrebícek, J.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Hurst, P. A.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Itina, T. E.

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Jensen, L.

Jones, S.

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Journot, E.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Jupé, M.

Kafka, K. R. P.

Kafka, K.R.P.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Kautek, W.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP. 20, 1307 (1965).

Kelly, P.

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

King, D. F.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Kirchner, M.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Kirner, S. V.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

Kozlová, M.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Kozlowski, M. R.

Kramer, D.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Krausz, F.

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Kruger, J.

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Krüger, J.

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

Lamaignere, L.

Lamaignère, L.

M. Sozet, S. Bouillet, J. Berthelot, J. Neauport, L. Lamaignère, and L. Gallais, “Sub-picosecond laser damage growth on high reflective coatings for high power applications,” Opt. Express 25, 25767–25781 (2017).
[Crossref] [PubMed]

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Lanternier, T.

Laurence, T. A.

Lavastre, E.

Legros, P.

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Leyder, S.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Loh, E.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

Lu, H.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Ly, S.

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014).
[Crossref]

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).

Maradudin, A. A.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Marine, W.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Martin, S.

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

Mazur, E.

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21, 26323 (2013).
[Crossref] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[Crossref]

Medrík, T.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Melninkaitis, A.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[Crossref] [PubMed]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Michálek, V.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Mills, D. L.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Minoshima, K.

Mirza, I.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Mocek, T.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Mouricaud, D.

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref] [PubMed]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Murphy, R. D.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

Natoli, J. Y.

Neascu, C.

Neauport, J.

Néauport, J.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Negres, R. A.

Negres, R.L.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Nemes, G.

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

Obara, G.

Obara, M.

Palmier, S.

Peceli, D.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref] [PubMed]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Prokhorov, A. M.

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).

Pupka, E.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Razé, G.

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Reid, R. S.

Rigatti, A.

Ristau, D.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[Crossref] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

D. Ristau, Laser-Induced Damage in Optical Materials (CRC, 2014).
[Crossref]

Roquin, N.

Rosenfeld, A.

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Rudenko, A.

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Rudolph, W.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Rullier, J.-L.

Rus, B.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Rusen, L.

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

Sartania, S.

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[Crossref]

Šciuka, M.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Sentis, M.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Sham, L. J.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Shea, K.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Shen, N.

Shen, X. A.

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

Shimizu, H.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Sirutkaitis, V.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[Crossref] [PubMed]

Smalakys, L.

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

Sozet, M.

Sparks, M.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Spielmann, C.

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

Staggs, M.

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

Steele, W. A.

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Stolz, C.J.

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Stratan, A.

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Talisa, N.

Tempea, G.

Terakawa, M.

Tomáštík, J.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

Torralva, B.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

Uteza, O.

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Velpula, P. K.

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

Warren, R.

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

Wiggins, T. A.

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials (IOP Publishing Ltd, 2003).
[Crossref]

Xiang, X.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Yablonovitch, E.

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[Crossref]

Yada, S.

Yalisove, S. M.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

Yu, J.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Yuan, X.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Zheng, W.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Zorila, A.

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

Zu, X.

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Adv. Condens. Matter Phys. (1)

J. Yu, X. Xiang, S. He, X. Yuan, W. Zheng, H. Lu, and X. Zu, “Laser-induced damage initiation and growth of optical materials,” Adv. Condens. Matter Phys. 364627, 32 (2014).

Appl. Opt. (4)

Appl. Phys. A (1)

S. Martin, A. Hertwig, M. Lenzner, J. Krüger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884 (2003).
[Crossref]

Appl. Phys. Lett. (2)

W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146–3148 (1996).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features,” Appl. Phys. Lett. 104, 231117 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld, and J. Krüger, “Laser-Induced Periodic Surface Structures—A Scientific Evergreen,” IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).
[Crossref]

J. Appl. Phys. (3)

L. Gallais, D. B. Douti, M. Commandré, G. Batavičiūte, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117, 223103 (2015).
[Crossref]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36, 3688–3689 (1965).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108, 043523 (2010).
[Crossref]

J. Physics: Conf. Ser. (1)

H. Bercegol, A. Boscheron, J. M. DiNicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Physics: Conf. Ser. 112, 032013 (2008).

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[Crossref]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2, 44 (2006).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Opt. Eng. (5)

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53, 010901 (2014).
[Crossref]

A. Hervy, L. Gallais, G. Chériaux, and D. Mouricaud, “Femtosecond laser-induced damage threshold of electron beam deposited dielectrics for 1-m class optics,” Opt. Eng. 53(1), 011001 (2017).

S. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 281039 (1989).
[Crossref]

M. Ďurák, P. K. Velpula, D. Kramer, J. Cupal, T. Medřík, J. Hřebíček, J. Golasowski, D. Peceli, M. Kozlová, and B. Rus, “Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems,” Opt. Eng. 56, 011024 (2016).
[Crossref]

A. Stratan, A. Zorila, L. Rusen, and G. Nemes, “Measuring effective area of spots from pulsed laser beams,” Opt. Eng. 53, 122513 (2014).
[Crossref]

Opt. Express (10)

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21, 26323 (2013).
[Crossref] [PubMed]

H. Shimizu, S. Yada, G. Obara, and M. Terakawa, “Contribution of defect on early stage of LIPSS formation,” Opt. Express 22, 17990–17998 (2014).
[Crossref] [PubMed]

K. R. P. Kafka, N. Talisa, G. Tempea, D. R. Austin, C. Neascu, and E. A. Chowdhury, “Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics,” Opt. Express 24, 28858–28868 (2016).
[Crossref] [PubMed]

M. Chorel, T. Lanternier, E. Lavastre, N. Bonod, B. Bousquet, and J. Neauport, “Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers,” Opt. Express 26, 11764 (2016).
[Crossref]

T. A. Laurence, R. A. Negres, S. Ly, N. Shen, C. W. Carr, D. A. Alessi, A. Rigatti, and J. D. Bude, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II. Scaling laws and the density of precursors,” Opt. Express 25, 15381 (2017).
[Crossref] [PubMed]

S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[Crossref] [PubMed]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
[Crossref] [PubMed]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,” Opt. Express 25, 15161–15178 (2017).
[Crossref] [PubMed]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[Crossref] [PubMed]

M. Sozet, S. Bouillet, J. Berthelot, J. Neauport, L. Lamaignère, and L. Gallais, “Sub-picosecond laser damage growth on high reflective coatings for high power applications,” Opt. Express 25, 25767–25781 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (5)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[Crossref]

M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J. Sham, E. Loh, and D. F. King, “Theory of electron-avalanche breakdown in solids,” Phys. Rev. B 24, 3519–3536 (1981).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141 (1983).
[Crossref]

D. Grojo, S. Leyder, P. Delaporte, W. Marine, M. Sentis, and O. Uteza, “Long-wavelength multiphoton ionization inside band-gap solids,” Phys. Rev. B 88, 195135 (2013).
[Crossref]

Phys. Rev. Lett. (1)

E. Yablonovitch and N. Bloembergen, “Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media,” Phys. Rev. Lett. 29, 907–910 (1972).
[Crossref]

Proc. SPIE (1)

J. H. Campbell, P. A. Hurst, D. D. Heggins, W. A. Steele, and S. E. Bumpas, “Laser-induced damage and fracture in fused silica vacuum windows,” Proc. SPIE 2966, 106–125 (1997).
[Crossref]

Proceeding SPIE (1)

R.L. Negres, C.J. Stolz, K.R.P. Kafka, E.A. Chowdhury, M. Kirchner, K. Shea, and M. Daly, “40-fs broadband low dispersion mirror thin film damage competition,” Proceeding SPIE 10014, 100140E (2016).
[Crossref]

Sci. Rep. (2)

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
[Crossref] [PubMed]

A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, and T. E. Itina, “Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin,” Sci. Rep. 7, 12306 (2017).
[Crossref] [PubMed]

Science (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref] [PubMed]

Sov. Phys. JETP. (2)

A. S. Epifanov, A. A. Manenkov, and A. M. Prokhorov, “Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field,” Sov. Phys. JETP. 43, 377–382 (1976).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP. 20, 1307 (1965).

Other (5)

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (CRC, 2011).

R. M. Wood, Laser-Induced Damage of Optical Materials (IOP Publishing Ltd, 2003).
[Crossref]

D. Ristau, Laser-Induced Damage in Optical Materials (CRC, 2014).
[Crossref]

COMSOL Multiphysics, “Wave-optics-module,” https://www.comsol.com/wave-optics-module .

“Lasers and laser-related equipment: test methods for laser-induced damage threshold,” ISO Standard Nos. 21254–1–21254–4 (2011).

Supplementary Material (1)

NameDescription
» Visualization 1       Evolution of damage on a HfO2 film for s-polarized laser beam with fluence 3.3J/cm2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 An example of a polarization dependent damage pattern, observed on a HfO2 coating (thickness 131nm, deposited by Ion Beam Sputtering) submitted to 100 pulses at 1030nm, 500fs, 45 deg of incidence, 2.5J/cm2. The polarization direction is perpendicular to the observed structures.
Fig. 2
Fig. 2 Basic schematic of the experimental setup: λ/2, half waveplates; LP, linear polarizer; BS, beam splitter; M1,2,3,4,5, steering mirrors; PC1,2, pyroelectric cells; L, focus lens; Obj., microscope objective; T.L., tube lens; F1,2,3, filters; BD, beam dump. Inset diagram describes the sample area with respect to the waist position of laser beam.
Fig. 3
Fig. 3 Spot size and pulse duration: (a) CCD image of beam intensity distribution at the sample location (b) Autocorrelation trace.
Fig. 4
Fig. 4 Electric field inside the film (HfO2 thin layer with layer thickness of 131nm and refractive index of 1.94). (a) When the incident beam is s-polarized (b) For p-polarized beam.
Fig. 5
Fig. 5 Illustration of the decrease of LIDT with the number of pulses in case of hafnia samples.
Fig. 6
Fig. 6 Evolution of damage for p-polarized laser beam with fluence 2.84J/cm2: (a) Formation of nanovoid after 190 pulses arrived on the sample surface and in (b–d) subsequent growth of the size of the damage spot. (Optical microscopy)
Fig. 7
Fig. 7 Evolution of damage for s-polarized laser beam with fluence 3.3J/cm2: see Visualization 1 (a) Formation of damage spot after 80 pulses and (b–f) subsequent growth of the damage spot. (Optical microscopy)
Fig. 8
Fig. 8 Average damage growth distance with respect to No. of laser shot: (a) When the incident beam is s-polarized (b) For p-polarized beam.
Fig. 9
Fig. 9 SEM micro-graph: (a) Damage for p-polarization, fluence 2.84J/cm2 and No. Pulse=1000 (b) Damage for s-polarization, fluence 3.3J/cm2 and No. Pulse=1000.
Fig. 10
Fig. 10 Characterization of the damage by Atomic Force Microscopy (Dimension Edge, Bruker). Left figure: surface topography; Right: Depth profile. It must be noticed that the result is a convolution of the real profile with the AFM tip profile, thereby the width should be less than 150nm in this case. (fluence 2.84J/cm2 and No. Pulse=1000).
Fig. 11
Fig. 11 Model geometry for the simulation (a) Whole computational domain (b) Different layers (c) Thin film with nanovoid.
Fig. 12
Fig. 12 Intensity distribution for p-polarization (a) Axis convention (b) with diameter = 150nm hole size (c) with hole size (dx = 150nm, dy = 178nm) (d) with hole size (dx = 150nm, dy = 206nm). Simulated plane is at z = −50nm.
Fig. 13
Fig. 13 1D line plot for the case (c) of Fig. 12.
Fig. 14
Fig. 14 Intensity distribution for s-polarization (a) Axis convention (b) with diameter = 150nm hole size (c) with hole size (dx = 190nm, dy = 150nm) (d) with hole size (dx = 230nm, dy = 150nm).
Fig. 15
Fig. 15 1D line plot for the case (c) of Fig. 14.
Fig. 16
Fig. 16 Intensity distribution at the damage growth tip, with dimension (dx = 150nm, dy = 164nm).
Fig. 17
Fig. 17 Observation of the polarization dependent laser damage patterns on a HfO2/SiO2 mirror, with HfO2 as the last layer.

Tables (3)

Tables Icon

Table 1 Parameters of the sample

Tables Icon

Table 2 Comparison of single shot LIDT in S and P polarization

Tables Icon

Table 3 Report on the observation of polarization dependent patterns

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d eff = 2 ( A eff / π ) 1 / 2
A 1 / e = π d eff 2 / 2
F surface = ( F measured ) * cos ( θ AOI )
LIDT int = LIDT m * cos ( θ AOI ) * EFI max
EFI = E 2 / E inc 2
k a = ( k x , k y , k z ) = k 0 n a ( cos ϕ sin θ , sin ϕ sin θ , cos θ )
E 0 = E 0 ( sin ϕ , cos ϕ , 0 ) exp ( i ( k x x + k y y ) )
E 0 = E 0 ( cos θ , 0 , sin θ ) exp ( i ( k x x + k z z ) )
P = I 0 A cos θ
k b = ( k x , k y , k b z )
k b z = k b cos θ b

Metrics