Abstract

In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report multi-stage generation of dispersive waves (DWs) in the range 90–120 nm, well into the extreme ultraviolet (UV) region. The simulations assume a 800 nm pump pulse with 30 fs 10 µJ pulse energy, launched into a 9 bar Ne-filled fiber with a 34 µm initial core diameter that is then tapered to a 10 µm core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90–120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Poor-man’s model of hollow-core anti-resonant fibers

Morten Bache, Md. Selim Habib, Christos Markos, and Jesper Lægsgaard
J. Opt. Soc. Am. B 36(1) 69-80 (2019)

Highly-tunable, visible ultrashort pulses generation by soliton-plasma interactions in gas-filled single-ring photonic crystal fibers

Zhiyuan Huang, Yifei Chen, Fei Yu, Dakun Wu, Ding Wang, Ruirui Zhao, Yu Zhao, Shoufei Gao, Yingying Wang, Pu Wang, and Yuxin Leng
Opt. Express 27(21) 30798-30809 (2019)

Wavelength-tunable few-cycle pulses in visible region generated through soliton-plasma interactions

Zhiyuan Huang, Ding Wang, Yifei Chen, Ruirui Zhao, Yu Zhao, Sungmo Nam, Changhwan Lim, Yujie Peng, Juan Du, and Yuxin Leng
Opt. Express 26(26) 34977-34993 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
    [Crossref] [PubMed]
  2. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000).
    [Crossref]
  3. F. Reinert and S. Hüfner, “Photoemission spectroscopy - from early days to recent applications,” New J. Phys. 7, 97 (2005).
    [Crossref]
  4. S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
    [Crossref]
  5. M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
    [Crossref] [PubMed]
  6. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 146–155 (2016).
    [Crossref]
  7. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
    [Crossref]
  8. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
    [Crossref]
  9. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref] [PubMed]
  10. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
    [Crossref] [PubMed]
  11. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20, 11153–11158 (2012).
    [Crossref] [PubMed]
  12. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
    [Crossref] [PubMed]
  13. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
    [Crossref] [PubMed]
  14. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
    [Crossref] [PubMed]
  15. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref] [PubMed]
  16. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
    [Crossref] [PubMed]
  17. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 156–161 (2016).
    [Crossref]
  18. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
    [Crossref]
  19. F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
    [Crossref] [PubMed]
  20. R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25, 20612–20621 (2017).
    [Crossref] [PubMed]
  21. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref] [PubMed]
  22. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref] [PubMed]
  23. G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011).
    [Crossref] [PubMed]
  24. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref] [PubMed]
  25. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  26. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
    [Crossref]
  27. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
    [Crossref] [PubMed]
  28. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
    [Crossref]
  29. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
    [Crossref] [PubMed]
  30. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
    [Crossref] [PubMed]
  31. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
    [Crossref] [PubMed]
  32. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  33. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
    [Crossref]
  34. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
    [Crossref] [PubMed]
  35. M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011).
    [Crossref]
  36. M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
    [Crossref] [PubMed]
  37. M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42,2232–2235 (2017).
    [Crossref]
  38. D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
    [Crossref] [PubMed]
  39. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express 18, 5367–5374 (2010).
    [Crossref] [PubMed]
  40. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
    [Crossref] [PubMed]
  41. F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
    [Crossref]
  42. S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
    [Crossref] [PubMed]
  43. S. Sørensen, U. Møller, C. Larsen, P. Moselund, C. Jakobsen, J. Johansen, T. Andersen, C. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
    [Crossref]
  44. M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).
  45. F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6, 84–88 (2018).
    [Crossref]
  46. R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
    [Crossref]
  47. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [Crossref] [PubMed]
  48. G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
    [Crossref]
  49. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
    [Crossref]
  50. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
    [Crossref] [PubMed]
  51. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Light. Technol. 2, 116–126 (1984).
    [Crossref]
  52. J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
    [Crossref]
  53. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Reports 7, 11761 (2017).
    [Crossref]
  54. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [Crossref]
  55. M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
    [Crossref] [PubMed]
  56. A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
    [Crossref]
  57. M. A. Finger, N. Y. Joly, T. Weiss, and P. S. Russell, “Accuracy of the capillary approximation for gas-filled kagome-style photonic crystal fibers,” Opt. Lett. 39, 821–824 (2014).
    [Crossref] [PubMed]
  58. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47, 4856–4863 (2008).
    [Crossref] [PubMed]
  59. A. Börzsönyi, Z. Heiner, A. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of pressure dependent nonlinear refractive index of inert gases,” Opt. Express 18, 25847–25854 (2010).
    [Crossref] [PubMed]
  60. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]

2018 (1)

2017 (11)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42,2232–2235 (2017).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref] [PubMed]

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Reports 7, 11761 (2017).
[Crossref]

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25, 20612–20621 (2017).
[Crossref] [PubMed]

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

2016 (6)

2015 (4)

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref] [PubMed]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (4)

2012 (5)

2011 (8)

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

2008 (1)

2007 (3)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
[Crossref] [PubMed]

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
[Crossref]

2005 (2)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

F. Reinert and S. Hüfner, “Photoemission spectroscopy - from early days to recent applications,” New J. Phys. 7, 97 (2005).
[Crossref]

2002 (1)

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

2000 (1)

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000).
[Crossref]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
[Crossref]

1993 (1)

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Light. Technol. 2, 116–126 (1984).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

Ahmed, G.

Alkeskjold, T. T.

Amsanpally, A.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Andersen, T.

Archambault, J. L.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

Asplund, M. C.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Bache, M.

Bang, O.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref] [PubMed]

M. S. Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42,2232–2235 (2017).
[Crossref]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 156–161 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref] [PubMed]

S. Sørensen, U. Møller, C. Larsen, P. Moselund, C. Jakobsen, J. Johansen, T. Andersen, C. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

Baz, A.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Belardi, W.

Belli, F.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Bergman, R. G.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Bertram, A.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Biancalana, F.

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011).
[Crossref]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Bierlich, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Biersach, C. M.

Biriukov, A. S.

Birks, T.

Black, R. J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

Blades, M.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Blondy, J. M.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Börzsönyi, A.

Brilland, L.

Burak, I.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Bures, J.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

Caillaud, C.

Campuzano-Jost, P.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Carter, R. M.

Cassataro, M.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

Chafer, M.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Chang, G.

Chang, W.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Chemnitz, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Chen, L.-J.

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Debord, B.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Dianov, E. M.

Edavalath, N. N.

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
[Crossref]

Engelsholm, R. D.

Ermolov, A.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

Fedotov, A. B.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
[Crossref]

Finger, M. A.

Frei, H.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

French, R. H.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

Frosz, M. H.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref] [PubMed]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

Gérôme, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
[Crossref]

Grigorova, T.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Günendi, M. C.

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref] [PubMed]

Habib, M. S.

Hand, D. P.

Hanna, S.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Harris, C. B.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Hartung, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Heiner, Z.

Hepburn, J.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Herrmann, J.

Hoffmann, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Hölzer, P.

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Hu, J.

Hüfner, S.

F. Reinert and S. Hüfner, “Photoemission spectroscopy - from early days to recent applications,” New J. Phys. 7, 97 (2005).
[Crossref]

Hugonnot, E.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Husakou, A.

Im, S.-J.

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
[Crossref]

Jakobsen, C.

Jaworski, P.

Johansen, J.

Joly, N. Y.

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. Russell, “Accuracy of the capillary approximation for gas-filled kagome-style photonic crystal fibers,” Opt. Lett. 39, 821–824 (2014).
[Crossref] [PubMed]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Jonasz, M.

Jones, D. J.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

Kalashnikov, M. P.

Kartashov, D.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Kärtner, F. X.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Light. Technol. 2, 116–126 (1984).
[Crossref]

Keding, R.

Kida, Y.

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref] [PubMed]

Kitamura, R.

Knight, J. C.

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25, 20612–20621 (2017).
[Crossref] [PubMed]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 146–155 (2016).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref] [PubMed]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref] [PubMed]

Kobayashi, T.

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref] [PubMed]

Kobelke, J.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Köttig, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6, 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

Kotz, K. T.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Kovács, A.

Kovács, A. P.

Lacroix, S.

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

Lægsgaard, J.

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
[Crossref] [PubMed]

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).

Larsen, C.

Lemon, M. F.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

Lyngsø, J. K.

Maier, R. R.

Maier, R. R. J.

Mak, K. F.

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Markos, C.

Maurel, M.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Ménard, J.-M.

Menyuk, C. R.

Michieletto, M.

Miyagi, M.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Light. Technol. 2, 116–126 (1984).
[Crossref]

Miyasaka, H.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000).
[Crossref]

Møller, U.

Moselund, P.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Nazarkin, A.

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

Nold, J.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Novoa, D.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6, 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

Osvay, K.

Payne, C. K.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Petersen, C. R.

Pilon, L.

Plotnichenko, V. G.

Poletti, F.

Pryamikov, A. D.

Reinert, F.

F. Reinert and S. Hüfner, “Photoemission spectroscopy - from early days to recent applications,” New J. Phys. 7, 97 (2005).
[Crossref]

Robb, D.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Russell, P. S.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6, 84–88 (2018).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref] [PubMed]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

M. A. Finger, N. Y. Joly, T. Weiss, and P. S. Russell, “Accuracy of the capillary approximation for gas-filled kagome-style photonic crystal fibers,” Opt. Lett. 39, 821–824 (2014).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

Russell, P. S. J.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Saleh, M. F.

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

Sauer, G.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Schmidt, M. A.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Reports 7, 11761 (2017).
[Crossref]

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Schwuchow, A.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Scol, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Semjonov, S. L.

Serebryannikov, E. E.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
[Crossref]

Shephard, J. D.

Simpson, E.

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

Snee, P. T.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Sollapur, R.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Sørensen, S.

Spielmann, C.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Stark, S. P.

Tamai, N.

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000).
[Crossref]

Tan, G. L.

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

Tani, F.

F. Tani, F. Köttig, D. Novoa, R. Keding, and P. S. Russell, “Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers,” Photon. Res. 6, 84–88 (2018).
[Crossref]

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

Thomsen, C.

Travers, J. C.

F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates,” Optica 4, 1272–1276 (2017).
[Crossref]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

Trolès, J.

Uebel, P.

Urich, A.

Vincetti, L.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Wadsworth, W. J.

Wei, C.

Weiblen, R. J.

Weiss, T.

Wilkens, M. J.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Xu, M.

Yang, H.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Yeston, J. S.

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

Yu, F.

Zeisberger, M.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Reports 7, 11761 (2017).
[Crossref]

Zheltikov, A. M.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
[Crossref]

Zürch, M.

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 146–155 (2016).
[Crossref]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 156–161 (2016).
[Crossref]

Int. J. Mass Spectrom. (1)

S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4–10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134–146 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002).
[Crossref] [PubMed]

J. Light. Techn. (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Light. Techn. 12, 1338–1342 (1994).
[Crossref]

J. Light. Technol. (2)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Light. Technol. 2, 116–126 (1984).
[Crossref]

J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light. Technol. 11, 416–423 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

Light. Sci. Appl. (1)

R. Sollapur, D. Kartashov, M. Zürch, A. Hoffmann, T. Grigorova, G. Sauer, A. Hartung, A. Schwuchow, J. Bierlich, J. Kobelke, M. Chemnitz, M. A. Schmidt, and C. Spielmann, “Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers,” Light. Sci. Appl. 6, e17124 (2017).
[Crossref]

Nat. Com. (1)

F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813 (2017).
[Crossref]

Nat. Photon. (1)

P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014).
[Crossref]

New J. Phys. (1)

F. Reinert and S. Hüfner, “Photoemission spectroscopy - from early days to recent applications,” New J. Phys. 7, 97 (2005).
[Crossref]

Opt. Express (18)

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19, 1441–1448 (2011).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 µm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015).
[Crossref] [PubMed]

M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016).
[Crossref] [PubMed]

P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref] [PubMed]

F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016).
[Crossref] [PubMed]

R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25, 20612–20621 (2017).
[Crossref] [PubMed]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011).
[Crossref] [PubMed]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref] [PubMed]

A. Börzsönyi, Z. Heiner, A. Kovács, M. P. Kalashnikov, and K. Osvay, “Measurement of pressure dependent nonlinear refractive index of inert gases,” Opt. Express 18, 25847–25854 (2010).
[Crossref] [PubMed]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Trolès, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15348 (2017).
[Crossref] [PubMed]

S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express 18, 5367–5374 (2010).
[Crossref] [PubMed]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref] [PubMed]

S. Sørensen, U. Møller, C. Larsen, P. Moselund, C. Jakobsen, J. Johansen, T. Andersen, C. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

Opt. Lett. (5)

Optica (2)

Optica. (1)

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017).
[Crossref]

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012).
[Crossref] [PubMed]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. A (3)

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011).
[Crossref]

Phys. Rev. B (1)

G. L. Tan, M. F. Lemon, D. J. Jones, and R. H. French, “Optical properties and london dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry,” Phys. Rev. B 72, 205117 (2005).
[Crossref]

Phys. Rev. Lett. (6)

M. F. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Y. Joly, P. S. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011).
[Crossref] [PubMed]

D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015).
[Crossref] [PubMed]

M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012).
[Crossref] [PubMed]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref] [PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017).
[Crossref] [PubMed]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

Sci. Reports (1)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Reports 7, 11761 (2017).
[Crossref]

Other (1)

M. Bache, M. S. Habib, C. Markos, and J. Lægsgaard, “Poor-man’s model of hollow-core anti-resonant fibers,” arXiv:180610416 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM image of a fabricated HC-AR silica fiber with 7 AR cladding tubes, 250 nm tube-wall thickness and 34 µm core diameter. (b) The FEM design used in this paper is based on the fiber (a), and the FEM structure is shown overlapped with the fundamental mode at 800 nm. (c) and (d) FEM data of calculated effective index for an evacuated fiber and loss vs. wavelength. The effective index is scaled to the vacuum MS dispersion, see text for details. The original fiber (2ac = 34 µm and Δ = 250 nm) was used as a starting point, and the shown cores sizes are then considered linearly tapered so Δ is scaled accordingly down.
Fig. 2
Fig. 2 (a) Basic fiber taper layout with LBT = 17 cm of untapered fiber with 34 µm core diameter followed by LT = 19 cm taper to a 10 µm core size and LW = 2 cm waist after the taper. For a fiber filled with 9 bar Ne, (b) and (c) show the hybrid fundamental mode’s GVD and loss vs. wavelength (log scale) using the poor-man’s model [44], i.e. using Eqs. (5)(11).
Fig. 3
Fig. 3 Simulation of fiber taper shown in Fig. 2 using a 800 nm 30 fs 10 µJ input pulse. (a) Spectral evolution, shown as the power-spectral density (PSD) on a dB scale. Here the NUV, MUV, FUV and XUV sections are indicated with dotted lines, and the start (1) and finish (2) of the tapering section are indicated with dashed lines, and their snapshots are plotted with blue and red colors in the top plot. (b) Time evolution, shown with a dB scale to emphasize the DW dynamic; the snapshots at the end of the tapering section and fiber exit are amplified by a factor of 5 for better visualization. (c) Ionization fraction and (d) energy content in the various relevant sections of the spectrum vs. propagation distance.
Fig. 4
Fig. 4 Spectrograms at selected stages of the simulation in Fig. 3. A 5 fs FWHM gating pulse was used. The dotted gray line shows the accumulated dispersion delay. On top of the spectrogram the power time trace is shown, while to the right the PSD spectrum is shown. In the top-right corner we show in each spectrogram the fiber taper shape and the ionization fraction vs. distance, and the current position is marked with a blue dashed line.
Fig. 5
Fig. 5 Top row: UV energies (total as well as the FUV and XUV parts of the UV energy) for two cases: fixed taper length (left) and fixed length before taper (right). The data are shown at the taper end, and do therefore not include propagation in the waist section of the taper. Bottom row: FUV (120–200 nm) and XUV (10–120 nm) part of selected spectra; the red spectra in these plots are the same, namely that of Figs. 3 and 4.
Fig. 6
Fig. 6 Simulation of taper from 34 to 10 µm with a short section before the taper (2 cm) and a short taper section (2 cm). The dispersion and loss is as such the same as shown in Fig. 1, only the tapering section is much shorter. Again a 800 nm 30 fs 10 µJ input pulse was used. (a) spectral and (b) temporal evolution vs. distance; (c) ionization fraction and (d) energy distribution vs. distance. (e) spectrogram at the end of the taper.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n eff , MS = 1 u m n 2 a c 2 k 0 2 1 u m n 2 2 a c 2 k 0 2
α TE , BR = 2 u m m a c 2 k 0 [ 4 cos 2 ( σ Δ ) + ( σ κ + κ σ ) 2 sin 2 ( σ Δ ) ]
α TE , BR = 2 u m m a c 2 k 0 [ 4 cos 2 ( σ Δ ) + ( σ n d 2 κ + n d 2 κ σ ) 2 sin 2 ( σ Δ ) ]
α H , BR = ( α TE , BR + α TM , BR ) / 2
n eff , p = n eff , MS u m n 2 a c 3 k 0 3 Im ( Z H )
α H , p = 2 u m n 2 a c 3 k 0 3 Re ( Z H )
Z ^ TE = Z 0 1 2 i ( σ κ + κ σ ) 1 tan ( σ Δ ) 2 i ( σ κ + κ σ ) 1 tan ( σ Δ )
Y ^ TM = Y 0 1 2 i ( σ n d 2 κ + n d 2 κ σ ) 1 tan ( σ Δ ) 2 i ( σ n d 2 κ + n d 2 κ σ ) 1 tan ( σ Δ )
( σ κ ) * = σ κ 1 + σ κ tanh ( n d n ˜ d Z d 2 σ Δ ) 1 + σ κ tanh ( n d n ˜ d Z d 2 σ Δ )
( σ n d 2 κ ) * = σ n d 2 κ 1 + n d 2 κ σ tanh ( n d n ˜ d Z d 2 σ Δ ) 1 + σ n d 2 κ tanh ( n d n ˜ d Z d 2 σ Δ )
α PMM = f FEM α capillary
( i z + D ^ ( i t ) + i α PMM 2 + γ ( 1 + i ω 0 1 t ) | A | 2 ω p 2 ( z , t ) 2 ω 0 c + i A eff I p t N e 2 | A | 2 ) A = 0
β ( λ , p , T ) = 2 π λ n eff , p 2 ( λ ) + δ ( λ ) ρ ( p , T ) ρ 0

Metrics