Abstract

Ultrafast laser assisted etching (ULAE) in fused silica is an attractive technology for fabricating three-dimensional micro-components. ULAE is a two-step process whereby ultrafast laser inscription (ULI) is first used to modify the substrate material and chemical etching is then used to remove the laser modified material. In this paper, we present a detailed investigation into how the ULI parameters affect the etching rate of laser modified channels and planar surfaces written in fused silica. Recently, potassium hydroxide (KOH) has shown potential to outperform the more commonly used hydrofluoric acid (HF) as a highly selective etchant for ULAE. Here we perform a detailed comparison of HF and KOH etching after laser inscription with a wide range of ultrafast laser irradiation parameters. Etching with KOH is found to be significantly more selective, removing the laser modified material up to 955 times faster than pristine material, compared with up to 66 when using HF. Maximum etching rates for the two etchants were comparable at 320 μm/hour and 363 μm/hour for HF and KOH respectively. We further demonstrate that highly selective, isotropic etching of non-planar surfaces can be achieved by controlling the polarization state of the laser dynamically during laser inscription.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Tailored surface birefringence by femtosecond laser assisted wet etching

Rokas Drevinskas, Mindaugas Gecevičius, Martynas Beresna, Yves Bellouard, and Peter G. Kazansky
Opt. Express 23(2) 1428-1437 (2015)

Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source

Jia Qi, Zhenhua Wang, Jian Xu, Zijie Lin, Xiaolong Li, Wei Chu, and Ya Cheng
Opt. Express 26(23) 29669-29678 (2018)

Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum
Opt. Lett. 30(14) 1867-1869 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  4. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  5. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [Crossref]
  6. D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
    [Crossref]
  7. C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
    [Crossref]
  8. M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
    [Crossref] [PubMed]
  9. D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
    [Crossref] [PubMed]
  10. D. Schafer, E. A. Gibson, E. A. Salim, A. E. Palmer, R. Jimenez, and J. Squier, “Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding,” Opt. Express 17(8), 6068–6073 (2009).
    [Crossref] [PubMed]
  11. K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro-and nanofabrication,” Cit. Appl. Phys. Rev. J. Laser Appl. 1, 41303–42006 (2014).
  12. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  13. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
    [Crossref]
  14. M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
    [Crossref] [PubMed]
  15. Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
    [Crossref]
  16. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
    [Crossref]
  17. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light. Appl. 3, 12 (2014).
  18. F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
    [Crossref]
  19. D. M. Knotter, “Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
    [Crossref]
  20. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  21. M. Hermans, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
    [Crossref]
  22. J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
    [Crossref]
  23. N. Varkentina, T. Cardinal, F. Moroté, P. Mounaix, P. André, Y. Deshayes, and L. Canioni, “Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates,” Opt. Express 21(24), 29090–29100 (2013).
    [Crossref] [PubMed]
  24. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
    [Crossref] [PubMed]
  25. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
    [Crossref]
  26. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  27. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
    [Crossref]
  28. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  29. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  30. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
    [Crossref] [PubMed]
  31. H. Seidel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3612 (1990).
    [Crossref]
  32. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
    [Crossref]
  33. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
    [Crossref] [PubMed]
  34. M. Lancry, F. Brisset, and B. Poumellec, “In the Heart of Nanogratings Made up During Femtosecond Laser Irradiation,” in Advanced Photonics & Renewable Energy (Optical Society of America, 2010), paper BWC3.
  35. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  36. N. Groothoff, M. O. Hongler, P. Kazansky, and Y. Bellouard, “Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing,” Opt. Express 23(13), 16993–17007 (2015).
    [Crossref] [PubMed]
  37. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
    [Crossref] [PubMed]
  38. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789 (2012).
    [Crossref]
  39. C. M. Pépin, E. Block, R. Gaal, J. Nillon, C. Hoenninger, P. Gillet, and Y. Bellouard, “Silicon formation in bulk silica through femtosecond laser engraving,” arXiv:1806.10802 (2018).
  40. O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
    [Crossref]

2018 (1)

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

2017 (3)

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

2016 (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

2015 (2)

2014 (6)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light. Appl. 3, 12 (2014).

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro-and nanofabrication,” Cit. Appl. Phys. Rev. J. Laser Appl. 1, 41303–42006 (2014).

M. Hermans, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

2013 (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

N. Varkentina, T. Cardinal, F. Moroté, P. Mounaix, P. André, Y. Deshayes, and L. Canioni, “Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates,” Opt. Express 21(24), 29090–29100 (2013).
[Crossref] [PubMed]

2012 (3)

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789 (2012).
[Crossref]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

2011 (2)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

2010 (1)

2009 (3)

D. Schafer, E. A. Gibson, E. A. Salim, A. E. Palmer, R. Jimenez, and J. Squier, “Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding,” Opt. Express 17(8), 6068–6073 (2009).
[Crossref] [PubMed]

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

2008 (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

2005 (4)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
[Crossref]

2004 (2)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2001 (2)

A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

2000 (1)

D. M. Knotter, “Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

1996 (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

1990 (1)

H. Seidel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3612 (1990).
[Crossref]

Albert, J.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Allegre, O. J.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Allington-Smith, J. R.

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

André, P.

Arriola, A.

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

Bado, P.

Bauchert, K.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Bellouard, Y.

N. Groothoff, M. O. Hongler, P. Kazansky, and Y. Bellouard, “Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing,” Opt. Express 23(13), 16993–17007 (2015).
[Crossref] [PubMed]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789 (2012).
[Crossref]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Canioni, L.

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Cardinal, T.

Cerullo, G.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Champion, A.

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Cheng, Y.

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light. Appl. 3, 12 (2014).

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro-and nanofabrication,” Cit. Appl. Phys. Rev. J. Laser Appl. 1, 41303–42006 (2014).

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
[Crossref]

Choudhury, D.

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Cui, Y.

Cunningham, C.

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

Davis, K. M.

Dearden, G.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Deshayes, Y.

Dugan, M.

Edwardson, S. P.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Fernandes, L. A.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Gibson, E. A.

Gottmann, J.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Groothoff, N.

Haque, M.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Herman, P. R.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hermans, M.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

M. Hermans, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

Hirao, K.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Ho, S.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Hongler, M. O.

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Jimenez, R.

Juodkazis, S.

Kar, A. K.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Kazansky, P.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Kelemen, L.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Kiss, R.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Knotter, D. M.

D. M. Knotter, “Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

Kopf, D.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Krafft, C.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Lee, K. K. C.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Liao, Y.

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Liu, D.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

MacLachlan, D. G.

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

Marcinkevi Ius, A.

Marques, P. V. S.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Mayer, G.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Midorikawa, K.

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
[Crossref]

Misawa, H.

Miura, K.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

Miwa, M.

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Moroté, F.

Mounaix, P.

Nishii, J.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Ormos, P.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Ortmann, J.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Osellame, R.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Palmer, A. E.

Pan, W.

Paterson, L.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Perrie, W.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Popp, J.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Poulin, J. C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide Invited,” Opt. Mater. Express 1(5), 998–1008 (2011).
[Crossref]

Qiao, L.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rajesh, S.

Ramsay, W. T.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Repiev, N.

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Ross, C.

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

Rothhardt, M.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Said, A.

Salim, E. A.

Schafer, D.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Seidel, H.

H. Seidel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3612 (1990).
[Crossref]

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Shimotsuma, Y.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sima, F.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Squier, J.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sugimoto, N.

Sugioka, K.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light. Appl. 3, 12 (2014).

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro-and nanofabrication,” Cit. Appl. Phys. Rev. J. Laser Appl. 1, 41303–42006 (2014).

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
[Crossref]

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30(14), 1867–1869 (2005).
[Crossref] [PubMed]

Thomson, R. R.

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Varkentina, N.

Vázquez, R. M.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Watanabe, M.

Watkins, K. G.

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Weickman, A.

Willoughby, N. A.

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

O. J. Allegre, W. Perrie, K. Bauchert, D. Liu, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Real-time control of polarisation in ultra-short-pulse laser micro-machining,” Appl. Phys., A Mater. Sci. Process. 107(2), 445–454 (2012).
[Crossref]

Appl. Surf. Sci. (1)

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications,” Appl. Surf. Sci. 248(1-4), 172–176 (2005).
[Crossref]

Cit. Appl. Phys. Rev. J. Laser Appl. (1)

K. Sugioka and Y. Cheng, “Femtosecond laser three-dimensional micro-and nanofabrication,” Cit. Appl. Phys. Rev. J. Laser Appl. 1, 41303–42006 (2014).

J. Am. Chem. Soc. (1)

D. M. Knotter, “Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

J. Electrochem. Soc. (1)

H. Seidel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3612 (1990).
[Crossref]

J. Laser Micro Nanoeng. (1)

M. Hermans, “Selective, Laser-Induced Etching of Fused Silica at High Scan-Speeds Using KOH,” J. Laser Micro Nanoeng. 9(2), 126–131 (2014).
[Crossref]

J. Phys. Chem. C (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates,” J. Phys. Chem. C 113(27), 11560–11566 (2009).
[Crossref]

Lab Chip (3)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, P. R. Herman, Y. Shimotsuma, K. Miura, K. Hirao, P. V. S. Marques, D. Kopf, G. Mayer, J. Albert, M. Rothhardt, C. Krafft, and J. Popp, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

D. Choudhury, W. T. Ramsay, R. Kiss, N. A. Willoughby, L. Paterson, A. K. Kar, J. Nishii, and G. Cerullo, “A 3D mammalian cell separator biochip,” Lab Chip 12(5), 948–953 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (3)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Light. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light. Appl. 3, 12 (2014).

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Micromachines (Basel) (2)

Y. Cheng, “Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications,” Micromachines (Basel) 8(2), 59 (2017).
[Crossref]

J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective Laser-Induced Etching of 3D Precision Quartz Glass Components for Microfluidic Applications—Up-Scaling of Complexity and Speed,” Micromachines (Basel) 8(4), 110 (2017).
[Crossref]

Nanophotonics (1)

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Opt. Express (7)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

D. Schafer, E. A. Gibson, E. A. Salim, A. E. Palmer, R. Jimenez, and J. Squier, “Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding,” Opt. Express 17(8), 6068–6073 (2009).
[Crossref] [PubMed]

N. Varkentina, T. Cardinal, F. Moroté, P. Mounaix, P. André, Y. Deshayes, and L. Canioni, “Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates,” Opt. Express 21(24), 29090–29100 (2013).
[Crossref] [PubMed]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12(10), 2120–2129 (2004).
[Crossref] [PubMed]

N. Groothoff, M. O. Hongler, P. Kazansky, and Y. Bellouard, “Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing,” Opt. Express 23(13), 16993–17007 (2015).
[Crossref] [PubMed]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express 18(20), 21490–21497 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Proc. SPIE (2)

D. Choudhury, A. Arriola, J. R. Allington-Smith, C. Cunningham, and R. R. Thomson, “Towards freeform microlens arrays for near infrared astronomical instruments,” Proc. SPIE 9151, 915146 (2014).
[Crossref]

C. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Towards optical quality micro-optic fabrication by direct laser writing and chemical etching,” Proc. SPIE 10094, 100940V (2017).
[Crossref]

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Other (2)

C. M. Pépin, E. Block, R. Gaal, J. Nillon, C. Hoenninger, P. Gillet, and Y. Bellouard, “Silicon formation in bulk silica through femtosecond laser engraving,” arXiv:1806.10802 (2018).

M. Lancry, F. Brisset, and B. Poumellec, “In the Heart of Nanogratings Made up During Femtosecond Laser Irradiation,” in Advanced Photonics & Renewable Energy (Optical Society of America, 2010), paper BWC3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Arrays of a) single scan channels and b) raster scanned planes with different scan separations (s), were inscribed in fused silica, each with unique irradiation parameters. Subsequently, substrates were etched in HF and KOH and the rate of modified material removal measured. In a), the channel colour corresponds to writing depth and in b) the surface colour denotes laser polarization during inscription.
Fig. 2
Fig. 2 (a) Micrograph of a group of single scan channels inscribed with increasing pulse energy from 50 to 526nJ and etched in a 5% HF solution for 90 minutes. Here the laser was linearly polarized along the x-axis. b) Etchant penetration into 2D surfaces inscribed with the laser polarized along the y-axis (parallel to the translation direction) and etched in 5% HF for 90 minutes. The etching agent penetrates both faces of the glass, denoted as near (left) and far (right) which corresponds to their proximity to the inscription lens during laser writing.
Fig. 3
Fig. 3 Etching rate of high quality pristine fused silica submerged in HF and KOH. Etching rates in 5% HF at 40 ± 2 °C (blue line) and 8 mol/L KOH at 85 ± 2 °C (red line) were 4.86 ± 0.04 μm/hour and 0.38 ± 0.02 μm/hour respectively. Error bars represent one standard deviation determined from six repeat measurements.
Fig. 4
Fig. 4 Heatmaps showing the etching selectivity of laser irradiated material etched in a 5% HF solution. a) Etching selectivity of 1D channels - each triplet of rows corresponds to writing at depths of 250, 500 and 750 μm (from bottom to top on the heatmap) in bulk fused silica. b) Selectivity of 2D planar surfaces - each pair of rows represent etchant penetration into the near (bottom) and far (top) faces of the fused silica substrate, with respect to the focusing objective. In b) the surfaces were written with a fixed scan separation of 3 μm – a value well below the confocal parameter of the laser focus. Data marked with a dashed grey line were not obtained due to pulse energy limits at higher repetition rates. c) The selectivity obtained for 2D planar surfaces as a function of scan separations is presented. While the scan separation was varied, the pulse energy and repetition rate were kept constant at 200 nJ and 250kHz respectively.
Fig. 5
Fig. 5 Heatmaps showing the etching selectivity of laser irradiated material etched in an 8 mol/L KOH solution at 85°C. a) Selectivity of 1D channels - each triplet of rows corresponds to writing at depths of 250, 500 and 750 μm (from bottom to top on the heatmap) in bulk fused silica. b) Selectivity of 2D planar surfaces - each pair of rows represent etchant penetration into the near (bottom) and far (top) faces of the fused silica substrate, with respect to the focusing objective. In b) the surfaces were written with a fixed scan separation of 3 μm - a value well below the confocal parameter of the laser focus. Data marked with a dashed grey line were not obtained due to pulse energy limits at higher repetition rates. c) The selectivity obtained for 2D planar surfaces as a function of scan separations is presented. While the scan separation was varied, the pulse energy and repetition rate were kept constant at 200 nJ and 250kHz respectively.
Fig. 6
Fig. 6 An isometric view (a) and side views (b) of a schematic representing curved surfaces inscribed in a fused silica chip. Three surfaces were written using different polarization control techniques – i) static, ii) alternating orthogonal and iii) surface-matched. After inscription, the substrates were etched in HF and KOH and the etchant penetration into the top and bottom surfaces was measured.
Fig. 7
Fig. 7 Micrographs taken in the x-z plane, show the polarization dependence of etchant penetration into the near face (highlighted by a blue dotted line) and far face (highlighted by a yellow dotted line) of the substrate for each of the three polarization control cases when etching with HF and KOH.

Tables (2)

Tables Icon

Table 1 Summary of the ULAE parameter space investigated.

Tables Icon

Table 2 Summary of ULAE parameters which optimized etching selectivity as determined by a parameter space investigation.

Metrics