Abstract

Nano-resonators can be used in photovoltaics to drastically improve the ability of the device to absorb light and generate photo-carriers, therefore enabling a reduction of the absorber volume. Conventionally, the harvest of the spectrally broad solar spectrum is achieved via the tedious engineering of multiple optical resonances. In this paper, we propose a breakthrough approach, which consists in reducing the solar spectral range with a spectral conversion layer to match only one resonance that can then be easily designed. We use a Maxwell solver and a ray-tracing code to optimize the nano-resonator and its spectral converter. We show that 66.2% optical efficiency can be theoretically achieved in less than 40 nm mean thick absorber while leading to device design enabling collection of photo-generated carriers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures

Rana Biswas and Erik Timmons
Opt. Express 21(S5) A841-A846 (2013)

Planar ultrathin omni-directional perfect absorber utilizing amorphous silicon for photovoltaics

Rui Yang, Chenjie Dai, Chengwei Wan, Guoxing Zheng, and Zhongyang Li
Opt. Mater. Express 10(2) 532-539 (2020)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
    [Crossref]
  2. A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflectors”, in 15th Photovoltaic Specialists Conference, Kissimmee, FL (1981).
  3. S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
    [Crossref]
  4. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
    [Crossref]
  5. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
    [Crossref]
  6. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  7. E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  8. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  9. K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198–215 (2011).
    [Crossref] [PubMed]
  10. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
    [Crossref] [PubMed]
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [Crossref] [PubMed]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  13. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
    [Crossref]
  14. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
    [Crossref] [PubMed]
  15. A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
    [Crossref] [PubMed]
  16. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
    [Crossref] [PubMed]
  17. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  18. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [Crossref]
  19. I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
    [Crossref]
  20. I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
    [Crossref] [PubMed]
  21. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
    [Crossref]
  22. L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
    [Crossref]
  23. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
    [Crossref]
  24. F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
    [Crossref] [PubMed]
  25. H. C. Casey and E. Buehler, “Evidence for low surface recombination velocity on n-type InP,” Appl. Phys. Lett. 30(5), 247–249 (1977).
    [Crossref]
  26. Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
    [Crossref] [PubMed]
  27. B. Portier, F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations,” J. Opt. Soc. Am. A 30(4), 573–581 (2013).
    [Crossref] [PubMed]
  28. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter structures in MOCVD InP solar cells”, Conference Record 21th IEEE Photovoltaic Specialists Conference, Kissimmee 141–144 (1990).
    [Crossref]
  30. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators-a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  31. F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
    [Crossref]
  32. J.-L. Pelouard, J.-F. Guillemoles, F. Proise, M. Paire, D. Lincot, “Photovoltaic component with high conversion efficiency”, Patent n° WO2014049157A2, (2014).
  33. H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
    [Crossref] [PubMed]
  34. F. Proise, “Study and realization of micro/nano photovoltaic cells and their concentration system”, PhD Thesis, UPMC 2014, https://tel.archives-ouvertes.fr/tel-01137589/document
  35. D. A. Goldman, J. Murray, and J. N. Munday, “Nanophotonic resonators for InP solar cells,” Opt. Express 24(10), A925–A934 (2016), doi:.
    [Crossref] [PubMed]
  36. R. D. Needell, O. Ilic, C. R. Bukowsky, Z. Nett, L. Xu, J. He, H. Bauser, B. G. Lee, J. F. Geisz, R. G. Nuzzo, A. P. Alivisatos, and H. A. Atwater, “Micro-optical Tandem Luminescent Solar Concentrators”, (2017), arXiv:1710.00034.
  37. J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
    [Crossref] [PubMed]
  38. A. Cattoni, H. Chen, J. Goffard, R. De Lépinau, B. Behaghel, C. Dupuis, N. Bardou, and S. Collin, “Multiresonant light trapping in ultra-thin GaAs and CIGS solar cells,” in Light, Energy and the Environment, OSA Technical Digest (online) (2017), paper PW3A.2.
  39. A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
    [Crossref] [PubMed]
  40. R. Saive and H. A. Atwater, “Mesoscale trumps nanoscale: metallic mesoscale contact morphology for improved light trapping, optical absorption and grid conductance in silicon solar cells,” Opt. Express 26(6), A275–A282 (2018).
    [Crossref] [PubMed]

2018 (2)

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

R. Saive and H. A. Atwater, “Mesoscale trumps nanoscale: metallic mesoscale contact morphology for improved light trapping, optical absorption and grid conductance in silicon solar cells,” Opt. Express 26(6), A275–A282 (2018).
[Crossref] [PubMed]

2017 (1)

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

2016 (1)

2015 (2)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

2014 (1)

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

2013 (4)

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

B. Portier, F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations,” J. Opt. Soc. Am. A 30(4), 573–581 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[Crossref] [PubMed]

2012 (3)

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
[Crossref]

2011 (4)

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

2010 (7)

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

2008 (3)

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators-a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

2006 (1)

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

2005 (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

1991 (1)

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
[Crossref] [PubMed]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

1977 (1)

H. C. Casey and E. Buehler, “Evidence for low surface recombination velocity on n-type InP,” Appl. Phys. Lett. 30(5), 247–249 (1977).
[Crossref]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Alù, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Atwater, H. A.

Bae, W. K.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Ballif, C.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Bardou, N.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Barnham, K. W. J.

Bartoli, F. J.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[Crossref] [PubMed]

Bende, E. E.

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Bose, R.

Bouchon, P.

Büchtemann, A.

Budel, T.

Buechtemann, A.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

Buehler, E.

H. C. Casey and E. Buehler, “Evidence for low surface recombination velocity on n-type InP,” Appl. Phys. Lett. 30(5), 247–249 (1977).
[Crossref]

Burgers, A. R.

Cabarrocas, P. R.

Casey, H. C.

H. C. Casey and E. Buehler, “Evidence for low surface recombination velocity on n-type InP,” Appl. Phys. Lett. 30(5), 247–249 (1977).
[Crossref]

Catchpole, K. R.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Cattoni, A.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Chatten, A. J.

Chen, J.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Colin, C.

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Collin, S.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Cubero, O.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Davoyan, A. R.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

Decanini, D.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Donegá, C. M.

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

Dupuis, C.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Escarré, J.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Fan, S.

Farrell, D. J.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Ferry, V. E.

Fujiwara, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[Crossref] [PubMed]

Garnett, E.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Ghenuche, P.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Glaeser, G. C.

L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
[Crossref]

Goetzberger, A.

A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflectors”, in 15th Photovoltaic Specialists Conference, Kissimmee, FL (1981).

Goldman, D. A.

Green, M. A.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Guillemoles, J.-F.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Haghiri-Gosnet, A.-M.

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

Haïdar, R.

Haug, F.-J.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Huppert, D.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
[Crossref] [PubMed]

Jariwala, D.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

Jeong, B. G.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Joudrier, A.-L.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

Kafafi, Z. H.

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[Crossref] [PubMed]

Kanamori, Y.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

Kennedy, M.

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

Kimerling, L. C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Klimov, V. I.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Kondo, M.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

Koole, R.

Kupec, J.

Lalanne, P.

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Lee, D. C.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Lee, S. T.

K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Lemaître, A.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Li, H. B. T.

Lim, J.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Liu, J.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Massiot, I.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Maulidiani, S. W. A.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

McCormack, S. J.

Meijerink, A.

Meyer, A.

Meyer, T.

Mokkapati, S.

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

Munday, J. N.

Murray, J.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Pardo, F.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

B. Portier, F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations,” J. Opt. Soc. Am. A 30(4), 573–581 (2013).
[Crossref] [PubMed]

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

Pelouard, J. L.

Pelouard, J.-L.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

B. Portier, F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations,” J. Opt. Soc. Am. A 30(4), 573–581 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

Peng, K. Q.

K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Pere-Laperne, N.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Pillai, S.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Polman, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

Portier, B.

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

Proise, F.

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

Pronneke, L.

L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
[Crossref]

Quilitz, J.

Raman, A.

Rau, U.

L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
[Crossref]

Roca i Cabarrocas, P.

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Rosenwaks, Y.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
[Crossref] [PubMed]

Sai, H.

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

Saive, R.

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sauvan, C.

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Schropp, R. E. I.

Shapira, Y.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
[Crossref] [PubMed]

Sherrott, M. C.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Slooff, L. H.

Söderström, K.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Song, H.-J.

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

Stoop, R. L.

Tagliabue, G.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

Tat, K.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Sark, W. G. J. H. M.

Vandamme, N.

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Vanmaekelbergh, D.

Verhagen, E.

Verschuuren, M. A.

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Walters, R. J.

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

Wong, J.

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

Yu, Z.

Zeng, L.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

ACS Nano (1)

J. Wong, D. Jariwala, G. Tagliabue, K. Tat, A. R. Davoyan, M. C. Sherrott, and H. A. Atwater, “High Photovoltaic Quantum Efficiency in Ultrathin van der Waals Heterostructures,” ACS Nano 11(7), 7230–7240 (2017), doi:.
[Crossref] [PubMed]

ACS Photonics (1)

I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaître, J.-F. Guillemoles, and S. Collin, “Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers,” ACS Photonics 1(9), 878–884 (2014).
[Crossref]

Adv. Mater. (2)

K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25(17), 2385–2396 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

I. Massiot, C. Colin, N. Pere-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, and S. Collin, “Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells,” Appl. Phys. Lett. 101(16), 163901 (2012).
[Crossref]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006).
[Crossref]

H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93(14), 143501 (2008).
[Crossref]

H. C. Casey and E. Buehler, “Evidence for low surface recombination velocity on n-type InP,” Appl. Phys. Lett. 30(5), 247–249 (1977).
[Crossref]

EPJ Photovoltaics (1)

L. Pronneke, G. C. Glaeser, and U. Rau, “Simulations of geometry effects and loss mechanisms affecting the photon collection in photovoltaic fluorescent collectors,” EPJ Photovoltaics 3, 30101–30111 (2012).
[Crossref]

IEEE Trans. Electron Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Dev. 29(2), 300–305 (1982).
[Crossref]

J. Appl. Phys. (1)

S. Mokkapati and K. R. Catchpole, “Nanophotonic light trapping solar cells,” J. Appl. Phys. 112(10), 101101 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Journal of Photonics for Energy (1)

F. Proise, F. Pardo, S. W. A. Maulidiani, A.-L. Joudrier, C. Dupuis, N. Bardou, J.-F. Guillemoles, and J.-L. Pelouard, “Structured InP-based nanoantenna for photovoltaics applications,” Journal of Photonics for Energy 5(1), 053098 (2015).
[Crossref]

Nano Lett. (3)

H.-J. Song, B. G. Jeong, J. Lim, D. C. Lee, W. K. Bae, and V. I. Klimov, “Performance limits of Luminescent Solar Concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity,” Nano Lett. 18(1), 395–404 (2018).
[Crossref] [PubMed]

A. Cattoni, P. Ghenuche, A.-M. Haghiri-Gosnet, D. Decanini, J. Chen, J.-L. Pelouard, and S. Collin, “λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography,” Nano Lett. 11(9), 3557–3563 (2011).
[Crossref] [PubMed]

E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Opt. Express (7)

W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators-a review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. R. Cabarrocas, J. L. Pelouard, and S. Collin, “Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires,” Opt. Express 21(S3), A372–A381 (2013).
[Crossref] [PubMed]

D. A. Goldman, J. Murray, and J. N. Munday, “Nanophotonic resonators for InP solar cells,” Opt. Express 24(10), A925–A934 (2016), doi:.
[Crossref] [PubMed]

R. Saive and H. A. Atwater, “Mesoscale trumps nanoscale: metallic mesoscale contact morphology for improved light trapping, optical absorption and grid conductance in silicon solar cells,” Opt. Express 26(6), A275–A282 (2018).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter (1)

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Evidence for low intrinsic surface-recombination velocity on p-type InP,” Phys. Rev. B Condens. Matter 44(23), 13097–13100 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

Phys. Status Solidi Rapid Res. Lett. (1)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buechtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi Rapid Res. Lett. 2(6), 257–259 (2008).
[Crossref]

Science (2)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[Crossref]

Other (7)

A. Goetzberger, “Optical confinement in thin Si solar cells by diffuse back reflectors”, in 15th Photovoltaic Specialists Conference, Kissimmee, FL (1981).

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter structures in MOCVD InP solar cells”, Conference Record 21th IEEE Photovoltaic Specialists Conference, Kissimmee 141–144 (1990).
[Crossref]

A. Cattoni, H. Chen, J. Goffard, R. De Lépinau, B. Behaghel, C. Dupuis, N. Bardou, and S. Collin, “Multiresonant light trapping in ultra-thin GaAs and CIGS solar cells,” in Light, Energy and the Environment, OSA Technical Digest (online) (2017), paper PW3A.2.

F. Proise, “Study and realization of micro/nano photovoltaic cells and their concentration system”, PhD Thesis, UPMC 2014, https://tel.archives-ouvertes.fr/tel-01137589/document

R. D. Needell, O. Ilic, C. R. Bukowsky, Z. Nett, L. Xu, J. He, H. Bauser, B. G. Lee, J. F. Geisz, R. G. Nuzzo, A. P. Alivisatos, and H. A. Atwater, “Micro-optical Tandem Luminescent Solar Concentrators”, (2017), arXiv:1710.00034.

J.-L. Pelouard, J.-F. Guillemoles, F. Proise, M. Paire, D. Lincot, “Photovoltaic component with high conversion efficiency”, Patent n° WO2014049157A2, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of a nano-antenna array and its spectral convertor. The back silver layer supports a structured (width w, period p) InP pin junction (thickness t) and a top silver layer (thickness tm), embedded in a doped PMMA cavity (thickness tc).
Fig. 2
Fig. 2 Nano-resonator design. (a) Optical efficiency (colormap) as a function of t, w and p. (b) Best optical efficiencies for each parameter. x-axis is standardized. As an example, for the black curve corresponding to the period, min designates 150 nm whereas max corresponds to 1500 nm (see Table 1 for the tested parameters range). Optical efficiencies standard deviation is 0.15%.
Fig. 3
Fig. 3 Design trends. For three different InP thickness t of 70, 90 and 110 nm (squares, circles and triangles respectively), we represent the couple {period, width} allowing the best optical efficiency, given as a colormap. The upper left grey triangle represent non-physical configuration (width cannot be higher than period).
Fig. 4
Fig. 4 (a) Spectral output of the optimized structure. Green curve represents the photons which have been absorbed in the InP layer. Blue curve is the Fresnel loss due to the interface air/PMMA. Red curve is the escape loss through the front surface of the spectral convertor. Orange curve represents photons absorbed in the metal layers. Gap loss is not represented since it occurs at wavelength larger than InP bandgap. The normalized absorption and emission spectrum of the dye are also given (dash curves). The red-shift between the emission coefficient and the emitted spectrum is due to dye self-absorption [30]. (b) Scheme of the device. Loss channels are illustrated with colored arrows. Red star represents dye absorption.
Fig. 5
Fig. 5 Effect of the dye concentration and photoluminescence quantum yield on the optical efficiency. The black curve marks out the condition on the concentration and photoluminescence quantum yield where the use of the dye produces no net additional power conversion. The dye should be used only at the right of the black curve. Black dots are a guide for the eyes showing the optimal dye concentration for a given quantum yield.
Fig. 6
Fig. 6 Total / InP (solid / dash) absorption spectra in TE and TM polarization (red and blue respectively) at normal incidence. AM 1.5 is represented in gray as well as the spectral convertor-modified AM 1.5 in green. It represents the spectrum of the photons reaching the nano-resonator array.
Fig. 7
Fig. 7 Electric field intensity (|E|2) map at 835 nm / 810 nm in (TE / TM). Electric field confinement in TE is typical of 1st order Fabry-Perot resonance. In TM, confinement at the interface InP/metal is an evidence of plasmonic resonance.
Fig. 8
Fig. 8 Tolerance to incidence angle. Total absorption spectrum as a function of the wavelength and the angle of incidence in TE (a) or TM (b) polarization. (c) Integrated optical absorption over the spectral convertor-modified AM 1.5 spectrum (AMmod, obtained from green curve in Fig. 6) as a function of the incidence angle.
Fig. 9
Fig. 9 Photons recycling analysis. Black curve represents the spectrally integrated reflection coefficient of the nano-resonator, derived from the formula given in the graph. AMmod is the solar spectrum reaching the nano-resonator array leaving the spectral convertor (green curve in Fig. 6). Dash red line is a guide for the eyes corresponding to the front loss, due to the nano-resonator reflection coefficient.

Tables (1)

Tables Icon

Table 1 Geometrical parameters used for nano-resonator optimization

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t mean = w p .t

Metrics