Abstract

Dynamic control of radiative heat transfer is of fundamental interest as well as for applications in thermal management and energy conversion. However, realizing high contrast control of heat flow without moving parts and with high temporal frequencies remains a challenge. Here, we propose a thermal modulation scheme based on optical pumping of semiconductors in near-field radiative contact. External photo-excitation of the semiconductor emitters leads to increases in the free carrier concentration that in turn alters the plasma frequency, resulting in modulation of near-field thermal radiation. The temporal frequency of the modulation can reach hundreds of kHz limited only by the recombination lifetime, greatly exceeding the bandwidth of methods based on temperature modulcation. Calculations based on fluctuational electrodynamics show that the heat transfer coefficient between two silicon films can be tuned from near zero to 600 Wm−2K−1 with a gap distance of 100 nm at room temperature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field thermal upconversion and energy transfer through a Kerr medium

Chinmay Khandekar and Alejandro W. Rodriguez
Opt. Express 25(19) 23164-23180 (2017)

Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications

Constantin Simovski, Stanislav Maslovski, Igor Nefedov, and Sergei Tretyakov
Opt. Express 21(12) 14988-15013 (2013)

Convergence of vector spherical wave expansion method applied to near-field radiative transfer

Karthik Sasihithlu and Arvind Narayanaswamy
Opt. Express 19(S4) A772-A785 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
    [Crossref] [PubMed]
  2. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
    [Crossref] [PubMed]
  3. J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
    [Crossref]
  4. K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
    [Crossref]
  5. D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
    [Crossref]
  6. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4, 430 (2017).
    [Crossref]
  7. K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
    [Crossref] [PubMed]
  8. M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).
  9. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
    [Crossref] [PubMed]
  10. J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
    [Crossref] [PubMed]
  11. O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
    [Crossref] [PubMed]
  12. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
    [Crossref]
  13. R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
    [Crossref] [PubMed]
  14. J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
    [Crossref]
  15. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959)
  16. S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
    [Crossref] [PubMed]
  17. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
    [Crossref]
  18. B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
    [Crossref] [PubMed]
  19. Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
    [Crossref]
  20. R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
    [Crossref] [PubMed]
  21. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [Crossref] [PubMed]
  22. A. Karalis and J. D. Joannopoulos, “’Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
    [Crossref]
  23. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
    [Crossref]
  24. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
    [Crossref] [PubMed]
  25. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
    [Crossref]
  26. S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
    [Crossref]
  27. S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
    [Crossref]
  28. A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
    [Crossref]
  29. P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
    [Crossref]
  30. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
    [Crossref]
  31. N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
    [Crossref] [PubMed]
  32. C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
    [Crossref]
  33. S. M. Rytov, Theory of electric fluctuations and thermal radiation (Air Force Cambridge Research Center, 1959).
  34. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
    [Crossref]
  35. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
    [Crossref]
  36. L. Huldt, “Band-to-band auger recombination in indirect gap semiconductors,” Phys. Status Solidi A 8, 1 (1971).
    [Crossref]
  37. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
    [Crossref] [PubMed]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2018 (2)

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

2017 (4)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4, 430 (2017).
[Crossref]

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

2016 (7)

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

A. Karalis and J. D. Joannopoulos, “’Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
[Crossref]

2015 (4)

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616–622 (2015).
[Crossref]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

2014 (2)

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

2013 (2)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

2012 (1)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

2011 (2)

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
[Crossref]

2010 (2)

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
[Crossref] [PubMed]

2009 (3)

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
[Crossref]

2006 (1)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

1986 (1)

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

1971 (1)

L. Huldt, “Band-to-band auger recombination in indirect gap semiconductors,” Phys. Status Solidi A 8, 1 (1971).
[Crossref]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Abate, Y.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Allara, D. L.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Asano, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

Atwater, H. A.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Basu, S.

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
[Crossref]

Ben-Abdallah, P.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Bhatt, G.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Boltasseva, A.

Brar, V. W.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Braun, P. V.

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Bright, T. B.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Brongersma, M. L.

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Buddhiraju, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Caldwell, J. D.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Capasso, F.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959)

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Chang, C. C.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Chang, R. P. H.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

Chen, G.

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Chen, K.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Chevrier, J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Choi, M.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Christensen, T.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

Comin, F.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

DeVault, C.

Ding, D.

D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
[Crossref]

Dunkelberger, A. D.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Ebert, M.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Ellis, C. T.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Fan, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
[Crossref] [PubMed]

Ferrera, M.

Fiorino, A.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Foley, B. M.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Francoeur, M.

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
[Crossref]

Ganjeh, Y.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Gao, J.

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Giles, A. J.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Glembocki, O. J.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Gmitter, T.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Greffet, J.-J.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Guo, P.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

Hildenbrand, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Hippalgaonkar, K.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Holsteen, A. L.

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Hopkins, P. E.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Huldt, L.

L. Huldt, “Band-to-band auger recombination in indirect gap semiconductors,” Phys. Status Solidi A 8, 1 (1971).
[Crossref]

Ihlefeld, J. F.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Iizuka, H.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Ilic, O.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Inoue, T.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

Ito, K.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959)

Jang, M. S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. Karalis and J. D. Joannopoulos, “’Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Jourdan, G.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Kang, S.

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Karalis, A.

A. Karalis and J. D. Joannopoulos, “’Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Ketterson, J. B.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

Kim, C. S.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Kim, J.

Kim, L.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Kim, M.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Kim, S.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Kim, T.

D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
[Crossref]

Kinsey, N.

Ko, C.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Korvink, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Krueger, N. A.

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Kurzinger, A.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Lamprecht, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Lau, W. T.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
[Crossref] [PubMed]

Lee, B. J.

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
[Crossref]

Lee, S.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Lipson, M.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

Liu, X.

Long, J. P.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Majumdar, A.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

McKenzie, B. B.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Medlin, D. L.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Mensing, G.

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Messina, R.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Meyhofer, E.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Michael, J. R.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Miller, O. D.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

Minnich, A. J.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
[Crossref]

Miura, A.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Narayanaswamy, A.

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Naumann, F.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
[Crossref]

Nishikawa, K.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Noda, S.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

Ocier, C. R.

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Otey, C. R.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
[Crossref] [PubMed]

Owrutsky, J. C.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Padilla, W. J.

Peter, C.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Ramanathan, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Ratchford, D. C.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Reddy, P.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Rogers, J. A.

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Rousseau, E.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Rytov, S. M.

S. M. Rytov, Theory of electric fluctuations and thermal radiation (Air Force Cambridge Research Center, 1959).

Sandhu, S.

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

Santhanam, P.

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

Schaller, R. D.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

Scrymgeour, D. A.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Shen, S.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

Sherrott, M. C.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Siria, A.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Soljacic, M.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Song, B.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Spann, B. T.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

St-Gelais, R.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

Sweatlock, L. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
[Crossref]

Thomas, N. H.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

Thompson, D.

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

Tischler, J. G.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Toshiyoshi, H.

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Trolier-McKinstry, S.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Volz, S.

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Vurgaftman, I.

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

Wallace, M.

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

Wang, J.

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

Wang, K.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Wang, L.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref]

Wollenstein, J.

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

Wu, J.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Yang, Y.

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref]

Yin, X.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Zhang, S.

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Zhang, X.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Zhang, Z. M.

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
[Crossref]

Zhao, B.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Zheng, R.

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

Zhou, W.

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

Zhu, L.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

Zoysa, M. D.

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

ACS Nano (1)

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljacic, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12, 2474–2481 (2018).
[Crossref] [PubMed]

ACS Photon. (1)

C. R. Ocier, N. A. Krueger, W. Zhou, and P. V. Braun, “Tunable visibly transparent optics derived from porous silicon,” ACS Photon. 4(4), 909–914 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
[Crossref]

IEEE Sensors J. (1)

J. Hildenbrand, J. Korvink, J. Wollenstein, C. Peter, A. Kurzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors J. 10, 353–362 (2010).
[Crossref]

J. Appl. Phys. (1)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J. Heat Transfer (1)

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2009).
[Crossref]

Nano Energy (1)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Nano Lett. (5)

N. A. Krueger, A. L. Holsteen, S. Kang, C. R. Ocier, W. Zhou, G. Mensing, J. A. Rogers, M. L. Brongersma, and P. V. Braun, “Porous silicon gradient refractive index micro-optics,” Nano Lett. 16(12), 7402–7407 (2016).
[Crossref] [PubMed]

S. Shen, A. Narayanaswamy, and G. Chen, “Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 2909–2913 (2009).
[Crossref] [PubMed]

J. F. Ihlefeld, B. M. Foley, D. A. Scrymgeour, J. R. Michael, B. B. McKenzie, D. L. Medlin, M. Wallace, S. Trolier-McKinstry, and P. E. Hopkins, “Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films,” Nano Lett. 15, 1791–1795 (2015).
[Crossref] [PubMed]

J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated thermal rectifier for active heat flow control,” Nano Lett. 117(13), 4867–4872 (2014).
[Crossref]

K. Ito, K. Nishikawa, A. Miura, H. Toshiyoshi, and H. Iizuka, “Dynamic modulation of radiative heat transfer beyond the blackbody limit,” Nano Lett. 17(7), 4347–4353 (2017).
[Crossref] [PubMed]

Nat. Commun. (2)

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

R. Zheng, J. Gao, J. Wang, and G. Chen, “Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions,” Nat. Commun. 2, 289 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Inoue, M. D. Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13, 928–931 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

B. Song, D. Thompson, A. Fiorino, Y. Ganjeh, P. Reddy, and E. Meyhofer, “Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps,” Nat. Nanotechnol. 11, 509–514 (2016).
[Crossref] [PubMed]

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11, 515–519 (2016).
[Crossref] [PubMed]

Nat. Photon. (1)

E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “Radiative heat transfer at the nanoscale,” Nat. Photon. 3, 514–517 (2009).
[Crossref]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[Crossref] [PubMed]

Nature Photon. (2)

A. D. Dunkelberger, C. T. Ellis, D. C. Ratchford, A. J. Giles, M. Kim, C. S. Kim, B. T. Spann, I. Vurgaftman, J. G. Tischler, J. P. Long, O. J. Glembocki, J. C. Owrutsky, and J. D. Caldwell, “Active tuning of surface phonon polariton resonances via carrier photoinjection,” Nature Photon. 12, 50–56 (2018).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nature Photon. 10, 267–273 (2016).
[Crossref]

Optica (2)

Philos. Trans. R. Soc. London A (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London A 203, 385–420 (1904).
[Crossref]

Phys. Rev. B (3)

K. Chen, P. Santhanam, S. Sandhu, L. Zhu, and S. Fan, “Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer,” Phys. Rev. B 91(13), 134301 (2015).
[Crossref]

D. Ding, T. Kim, and A. J. Minnich, “Active thermal extraction of near-field thermal radiation,” Phys. Rev. B 93, 081402 (2016).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Phys. Rev. Lett. (3)

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
[Crossref] [PubMed]

Y. Yang and L. Wang, “Spectrally enhancing near-field radiative transfer between metallic gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117, 044301 (2016).
[Crossref]

E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces,” Phys. Rev. Lett. 57, 249 (1986).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, “Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

Phys. Status Solidi A (1)

L. Huldt, “Band-to-band auger recombination in indirect gap semiconductors,” Phys. Status Solidi A 8, 1 (1971).
[Crossref]

Sci. Rep. (2)

A. Karalis and J. D. Joannopoulos, “’Squeezing’ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion,” Sci. Rep. 6, 28472 (2016).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).
[Crossref] [PubMed]

Other (4)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
[Crossref]

S. M. Rytov, Theory of electric fluctuations and thermal radiation (Air Force Cambridge Research Center, 1959).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications, 1959)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the configuration for near-field radiative transfer dynamically controlled by external optical excitation. The two porous semiconductor films of thickness t on two substrates are maintained at constant temperature of T1 and T2 (T1 > T2) with a vacuum gap distance of d. Free carriers are excited by the external illumination from both sides, leading to the formation of surface plasmons and resulting in a modulation of near-field radiative heat transfer.
Fig. 2
Fig. 2 (a) Heat transfer coefficient versus volume fraction of the inclusions. (b) Spectral emissive power versus frequency for different porosities. (c) Heat transfer coefficient versus film thickness at f = 0.80. The heat transfer coefficient remains almost constant beyond 1 μm. (d) Carrier concentration versus input power density. The black and red dashed lines are the asymptotes considering only trap-assisted/surface recombination mechanism and Auger recombination mechanisms, respectively. All the calculations in (a), (b) and (c) are performed with a carrier concentration of 1019 cm−3.
Fig. 3
Fig. 3 (a) Heat transfer coefficient versus input power density with f = 0.80. The heat transfer coefficient is nearly zero at low optical pumping and increases to 600 Wm−2K−1 with power density of 2.3×103 Wcm−2. (b) and (c) Normalized exchange function versus angular frequency and wave vector. The carrier concentration is set at (b) 1016 cm−3, (c) 1019 cm−3 with f = 0.80. The black solid curve in (c) denotes the dispersion relation of the SPP mode where the real part of 1 is negative. The white dashed line is the light line in vacuum. Significant enhancement of heat transfer coefficient results from the increase of exchange function in (c) compared with (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h = 1 π 2 0 d ω Θ ( ω , T ) T 0 d β [ Γ s ( ω , β ) + Γ p ( ω , β ) ] .
Γ α = s , p ( ω , β ) = { β ( 1 | R α 1 | 2 ) ( 1 | R α 2 | 2 ) 4 | 1 R α 1 R α 2 e i 2 β z d | 2 , for β < ω / c ; β Im [ R α 1 ] Im [ R α 2 ] e i 2 β z d | 1 R α 1 R α 2 e i 2 β z d | 2 , for β > ω / c .
1 = 2 = eff = m 2 f ( i m ) + i + 2 m 2 m + i + f ( m i ) .
R SRH = n p n i 2 τ p ( n + n i ) + τ n ( p + n i ) V
R Auger = ( C n n + C p p ) ( n p n i 2 ) V
R Surface = S ( p p 0 ) A s
k SPP 1 d ln ( ± 1 ( ω ) 3 1 ( ω ) + 3 ) .