Abstract

The minimization of adjacency effects (AE) in SeaWiFS primary products at the Aqua Alta Oceanographic Tower (AAOT) was investigated using sample images concurrent with in situ measurements. The validation exercise was performed with the NASA SeaDAS processing scheme ingesting original SeaWiFS data and alternatively SeaWiFS top-of-atmosphere data corrected for AE, and additionally including and excluding the default turbid water (TW) correction algorithm. Results show overestimates of the TW contributions partially compensating for AE. The analysis also suggests that intra-annual biases observed in SeaWiFS radiometric products at the AAOT may result from a misinterpretation of the NIR atmospheric signal as water contribution in data acquired in winter, and from uncompensated AE in data acquired in summer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi
Appl. Opt. 56(4) 854-869 (2017)

Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry

Bryan A. Franz, Sean W. Bailey, P. Jeremy Werdell, and Charles R. McClain
Appl. Opt. 46(22) 5068-5082 (2007)

Simulation and analysis of adjacency effects in coastal waters: a case study

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi
Appl. Opt. 53(8) 1523-1545 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Global Climate Observing System, “Systematic observation requirements for satellite-based data products for climate: 2011 Update GCOS-154,” World Meteorological Organization (2011).
  2. J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
    [Crossref]
  3. G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
    [Crossref]
  4. G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
    [Crossref]
  5. F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
    [Crossref]
  6. G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
    [Crossref]
  7. G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
    [Crossref]
  8. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
    [Crossref] [PubMed]
  9. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).
    [Crossref] [PubMed]
  10. J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18(16), 2852–2860 (1979).
    [Crossref] [PubMed]
  11. B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
    [Crossref] [PubMed]
  12. B. Bulgarelli, V. Kiselev, and G. Zibordi, “Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea,” Appl. Opt. 56(4), 854–869 (2017).
    [Crossref] [PubMed]
  13. B. Bulgarelli and G. Zibordi, “Seasonal impact of adjacency effects in ocean color radiometry at the AAOT validation site,” IEEE Geosci. Remote Sens. Lett. 15(4), 488–492 (2018).
    [Crossref]
  14. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
    [Crossref] [PubMed]
  15. L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
    [Crossref]
  16. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [Crossref] [PubMed]
  17. H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
    [Crossref]
  18. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
    [Crossref] [PubMed]
  19. J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
    [Crossref]
  20. E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
    [Crossref]
  21. V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 85(3-4), 419–435 (2004).
    [Crossref]
  22. B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38(9), 1530–1542 (1999).
    [Crossref] [PubMed]
  23. V. B. Kisselev, L. Roberti, and G. Perona, “Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications,” Appl. Opt. 34(36), 8460–8471 (1995).
    [Crossref] [PubMed]
  24. B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 315–334 (2004).
    [Crossref]
  25. B. Bulgarelli, G. Zibordi, and J.-F. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42(27), 5365–5381 (2003).
    [Crossref] [PubMed]
  26. Y. Govaerts, “RTMOM V0B.10 Evaluation Report”, EUM/MET/DOC/06/0502 (2006)
  27. T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).
  28. V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
    [Crossref]
  29. K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
    [Crossref] [PubMed]
  30. A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28(8), 1873–1890 (2007).
    [Crossref]
  31. B. Bulgarelli and G. Zibordi, “On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI,” Remote Sens. Environ. 209, 423–438 (2018).
    [Crossref]
  32. C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
    [Crossref] [PubMed]
  33. F. Mélin and B. A. Franz, “Assessment of satellite ocean colour radiometry and derived geophysical products,” in Optical Radiometry for Ocean Climate Measurements 47, 609–638 (2014).
  34. G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).
  35. G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
    [Crossref]
  36. G. Zibordi and K. J. Voss, “Field radiometry and ocean color remote sensing,” in Oceanography from Space, 18, Dordrecht: Springer Netherlands, 307–334 (2010).
  37. M. Gergely and G. Zibordi, “Assessment of AERONET-OC LWN uncertainties,” Metrologia 51(1), 40–47 (2014).
    [Crossref]
  38. T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
    [Crossref]
  39. F. Mélin and G. Zibordi, “Aerosol variability in the Po Valley analyzed from automated optical measurements,” Geophys. Res. Lett. 32(3), 1–4 (2005).
    [Crossref]
  40. F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
    [Crossref]
  41. D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
    [Crossref]
  42. G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
    [Crossref]
  43. M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004).
    [Crossref]
  44. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994)

2018 (3)

B. Bulgarelli and G. Zibordi, “Seasonal impact of adjacency effects in ocean color radiometry at the AAOT validation site,” IEEE Geosci. Remote Sens. Lett. 15(4), 488–492 (2018).
[Crossref]

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

B. Bulgarelli and G. Zibordi, “On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI,” Remote Sens. Environ. 209, 423–438 (2018).
[Crossref]

2017 (1)

2016 (2)

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

2015 (1)

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

2014 (4)

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

F. Mélin and B. A. Franz, “Assessment of satellite ocean colour radiometry and derived geophysical products,” in Optical Radiometry for Ocean Climate Measurements 47, 609–638 (2014).

M. Gergely and G. Zibordi, “Assessment of AERONET-OC LWN uncertainties,” Metrologia 51(1), 40–47 (2014).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
[Crossref] [PubMed]

2013 (2)

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
[Crossref]

2012 (4)

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

2010 (2)

2009 (2)

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

2008 (2)

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

2007 (2)

2006 (1)

G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
[Crossref]

2005 (2)

F. Mélin and G. Zibordi, “Aerosol variability in the Po Valley analyzed from automated optical measurements,” Geophys. Res. Lett. 32(3), 1–4 (2005).
[Crossref]

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

2004 (3)

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004).
[Crossref]

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 85(3-4), 419–435 (2004).
[Crossref]

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 315–334 (2004).
[Crossref]

2003 (1)

2002 (2)

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[Crossref] [PubMed]

2000 (1)

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
[Crossref]

1999 (2)

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38(9), 1530–1542 (1999).
[Crossref] [PubMed]

1995 (1)

1994 (1)

1979 (1)

Ahmad, Z.

Alberotanza, L.

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Antoine, D.

Bailey, S. W.

Barrow, T.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Berthon, J.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Berthon, J. F.

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
[Crossref]

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Berthon, J.-F.

Brando, V. E.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Bruegge, C. J.

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
[Crossref]

Bulgarelli, B.

B. Bulgarelli and G. Zibordi, “Seasonal impact of adjacency effects in ocean color radiometry at the AAOT validation site,” IEEE Geosci. Remote Sens. Lett. 15(4), 488–492 (2018).
[Crossref]

B. Bulgarelli and G. Zibordi, “On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI,” Remote Sens. Environ. 209, 423–438 (2018).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea,” Appl. Opt. 56(4), 854–869 (2017).
[Crossref] [PubMed]

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
[Crossref] [PubMed]

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 85(3-4), 419–435 (2004).
[Crossref]

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 315–334 (2004).
[Crossref]

B. Bulgarelli, G. Zibordi, and J.-F. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42(27), 5365–5381 (2003).
[Crossref] [PubMed]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38(9), 1530–1542 (1999).
[Crossref] [PubMed]

Chen, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

D’Alimonte, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

Dall’Olmo, G.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Darecki, M.

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004).
[Crossref]

Davis, C. O.

Dickinson, R.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Dörnhöfer, K.

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

Doyle, J.

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 315–334 (2004).
[Crossref]

Doyle, J. P.

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Dubovik, O.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Eck, T. F.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Fabbri, B. E.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Feng, H.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Feng, L.

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

Franz, B. A.

Fraser, R. S.

Fu, R.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Gentili, B.

Gergely, M.

M. Gergely and G. Zibordi, “Assessment of AERONET-OC LWN uncertainties,” Metrologia 51(1), 40–47 (2014).
[Crossref]

Giles, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Gitelson, A.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Gitelson, A. A.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Gong, P.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Gordon, H. R.

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

Grossi, S.

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Heege, T.

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

Holben, B.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Holben, B. N.

F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
[Crossref]

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).
[Crossref] [PubMed]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Holz, J. C.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Hu, C.

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

Hung, N. N.

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

Jackson, T.

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

Kaitala, S.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

King, M. D.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

Kinne, S.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Kiselev, V.

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea,” Appl. Opt. 56(4), 854–869 (2017).
[Crossref] [PubMed]

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
[Crossref] [PubMed]

Kisselev, V.

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 85(3-4), 419–435 (2004).
[Crossref]

Kisselev, V. B.

Klinger, P.

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

Kwiatkowska, E. J.

Leavitt, B.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Lee, Z.

Liang, S.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Mannino, A.

Martonchik, J. V.

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
[Crossref]

McClain, C. R.

Mélin, F.

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

F. Mélin and B. A. Franz, “Assessment of satellite ocean colour radiometry and derived geophysical products,” in Optical Radiometry for Ocean Climate Measurements 47, 609–638 (2014).

F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
[Crossref]

F. Mélin and G. Zibordi, “Aerosol variability in the Po Valley analyzed from automated optical measurements,” Geophys. Res. Lett. 32(3), 1–4 (2005).
[Crossref]

Moody, E. G.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

Morel, A.

O’Neill, N. T.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Odermatt, D.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Oppelt, N.

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

Otterman, J.

Perona, G.

Platnick, S.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

Reid, J. S.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Roberti, L.

Rundquist, D. C.

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

Sathyendranath, S.

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

Schaaf, C. B.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

Schaepman, M.

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

Schuster, G.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Sclep, G.

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

Sei, A.

A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28(8), 1873–1890 (2007).
[Crossref]

Seppälä, J.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Shettle, E. P.

Shi, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Slutsker, I.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Smirnov, A.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

Strahler, A. H.

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
[Crossref]

Stramski, D.

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004).
[Crossref]

Targa, C.

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

van der Linde, D.

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Vandemark, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

Wang, M.

Werdell, J.

Werdell, P. J.

Wettle, M.

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

Xu, B.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Yang, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Zhang, M.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Zibordi, G.

B. Bulgarelli and G. Zibordi, “Seasonal impact of adjacency effects in ocean color radiometry at the AAOT validation site,” IEEE Geosci. Remote Sens. Lett. 15(4), 488–492 (2018).
[Crossref]

B. Bulgarelli and G. Zibordi, “On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI,” Remote Sens. Environ. 209, 423–438 (2018).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea,” Appl. Opt. 56(4), 854–869 (2017).
[Crossref] [PubMed]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
[Crossref] [PubMed]

M. Gergely and G. Zibordi, “Assessment of AERONET-OC LWN uncertainties,” Metrologia 51(1), 40–47 (2014).
[Crossref]

F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
[Crossref]

F. Mélin and G. Zibordi, “Aerosol variability in the Po Valley analyzed from automated optical measurements,” Geophys. Res. Lett. 32(3), 1–4 (2005).
[Crossref]

B. Bulgarelli, G. Zibordi, and J.-F. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42(27), 5365–5381 (2003).
[Crossref] [PubMed]

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Appl. Opt. (11)

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).
[Crossref] [PubMed]

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).
[Crossref] [PubMed]

J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18(16), 2852–2860 (1979).
[Crossref] [PubMed]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53(8), 1523–1545 (2014).
[Crossref] [PubMed]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Adjacency effects in satellite radiometric products from coastal waters: a theoretical analysis for the northern Adriatic Sea,” Appl. Opt. 56(4), 854–869 (2017).
[Crossref] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[Crossref] [PubMed]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[Crossref] [PubMed]

B. Bulgarelli, V. B. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38(9), 1530–1542 (1999).
[Crossref] [PubMed]

V. B. Kisselev, L. Roberti, and G. Perona, “Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications,” Appl. Opt. 34(36), 8460–8471 (1995).
[Crossref] [PubMed]

B. Bulgarelli, G. Zibordi, and J.-F. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42(27), 5365–5381 (2003).
[Crossref] [PubMed]

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).
[Crossref] [PubMed]

Geophys. Res. Lett. (2)

G. Zibordi, F. Mélin, and J. F. Berthon, “Comparison of SeaWiFS, MODIS and MERIS radiometric products at a coastal site,” Geophys. Res. Lett. 33(6), L06617 (2006).
[Crossref]

F. Mélin and G. Zibordi, “Aerosol variability in the Po Valley analyzed from automated optical measurements,” Geophys. Res. Lett. 32(3), 1–4 (2005).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (3)

F. Mélin, G. Zibordi, and B. N. Holben, “Assessment of the aerosol products from the SeaWiFS and MODIS ocean-color missions,” IEEE Geosci. Remote Sens. Lett. 10(5), 1185–1189 (2013).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9(6), 1056–1060 (2012).
[Crossref]

B. Bulgarelli and G. Zibordi, “Seasonal impact of adjacency effects in ocean color radiometry at the AAOT validation site,” IEEE Geosci. Remote Sens. Lett. 15(4), 488–492 (2018).
[Crossref]

in Optical Radiometry for Ocean Climate Measurements (1)

F. Mélin and B. A. Franz, “Assessment of satellite ocean colour radiometry and derived geophysical products,” in Optical Radiometry for Ocean Climate Measurements 47, 609–638 (2014).

Int. J. Remote Sens. (1)

A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28(8), 1873–1890 (2007).
[Crossref]

Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong (1)

T. Heege, V. Kiselev, M. Wettle, and N. N. Hung, “Operational multi-sensor monitoring of turbidity for the entire Mekong Delta,” Int. J. Remote Sens. Special Issues Remote Sensing of the Mekong 35(8), 2910–2929 (2014).

J. Appl. Meteorol. Climatol. (1)

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages,” J. Appl. Meteorol. Climatol. 47(11), 2879–2894 (2008).
[Crossref]

J. Atmos. Ocean. Technol. (1)

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).
[Crossref]

J. Geophys. Res. D Atmospheres (1)

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, I. Slutsker, and S. Kinne, “Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. D Atmospheres 104(24), 31333–31349 (1999).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 85(3-4), 419–435 (2004).
[Crossref]

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transf. 86(3), 315–334 (2004).
[Crossref]

Metrologia (1)

M. Gergely and G. Zibordi, “Assessment of AERONET-OC LWN uncertainties,” Metrologia 51(1), 40–47 (2014).
[Crossref]

NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) (1)

G. Zibordi, J. F. Berthon, J. P. Doyle, S. Grossi, D. van der Linde, C. Targa, and L. Alberotanza, “Coastal Atmosohere and Sea Time Series (CoASTS), Part 1: A tower-based, long-term measurement program,” NASA Technical Memorandum - SeaWIFS Postlaunch. Tech. Rep. Ser. (World Health Organ.) 19, 1–29 (2002).

Nat. Clim. Chang. (1)

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Chang. 3(10), 875–883 (2013).
[Crossref]

Opt. Express (1)

Remote Sens. Environ. (10)

L. Feng and C. Hu, “Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment,” Remote Sens. Environ. 174, 301–313 (2016).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009).
[Crossref]

F. Mélin, G. Sclep, T. Jackson, and S. Sathyendranath, “Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets,” Remote Sens. Environ. 177, 107–124 (2016).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

H. R. Gordon and B. A. Franz, “Remote sensing of ocean color: Assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance for SeaWiFS and MODIS intercomparisons,” Remote Sens. Environ. 112(5), 2677–2685 (2008).
[Crossref]

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inlad water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

B. Bulgarelli and G. Zibordi, “On the detectability of adjacency effects in ocean color remote sensing of mid-latitude coastal environments by SeaWiFS, MODIS-A, MERIS, OLCI, OLI and MSI,” Remote Sens. Environ. 209, 423–438 (2018).
[Crossref]

D. Odermatt, A. Gitelson, V. E. Brando, and M. Schaepman, “Review of constituent retrieval in optically deep and complex waters from satellite imagery,” Remote Sens. Environ. 118, 116–126 (2012).
[Crossref]

G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow, and J. C. Holz, “Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands,” Remote Sens. Environ. 96(2), 176–187 (2005).
[Crossref]

M. Darecki and D. Stramski, “An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea,” Remote Sens. Environ. 89(3), 326–350 (2004).
[Crossref]

Remote Sens. Rev. (1)

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19(1), 9–20 (2000).
[Crossref]

Sci. Total Environ. (1)

K. Dörnhöfer, P. Klinger, T. Heege, and N. Oppelt, “Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake,” Sci. Total Environ. 612, 1200–1214 (2018).
[Crossref] [PubMed]

Other (4)

G. Zibordi and K. J. Voss, “Field radiometry and ocean color remote sensing,” in Oceanography from Space, 18, Dordrecht: Springer Netherlands, 307–334 (2010).

Y. Govaerts, “RTMOM V0B.10 Evaluation Report”, EUM/MET/DOC/06/0502 (2006)

Global Climate Observing System, “Systematic observation requirements for satellite-based data products for climate: 2011 Update GCOS-154,” World Meteorological Organization (2011).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Spectral values of ξ Ltot i for images acquired in November-February (N=12), in September-October and March-April (N=31), in May-August (N=39). Error bars identify uncertainties δ ξ i . Red box bars indicate the SeaWiFS noise level NL.
Fig. 2
Fig. 2 Histograms of the geo-physical quantities characterizing the SeaWiFS images considered in this study (N=82). From upper left to lower right panel: sun zenith θ0, sun azimuth ϕ0, day of the year (Jday), sensor viewing angle θv, satellite azimuth angle ϕv, and Ångström exponent ν. The dashed lines indicate values applied for the MC simulations (see Section 2.2).
Fig. 3
Fig. 3 Spectral values of in situ τa (a) and R rs [sr1] (b) contributing to match-ups for the periods May-August, September-October and March-April, and November-February. The dashed lines represent values of τa applied for the MC simulations (see Section 2.2). It is noted that while mid-season simulations were performed for a wide range of atmospheric conditions, summer and winter simulations were conducted for the sole average ones [11].
Fig. 4
Fig. 4 Scatter plots of satellite (SAT) versus reference in situ (IN SITU) R rs values for procedure P0.
Fig. 5
Fig. 5 As in Fig. 4 but for procedure PTW.
Fig. 6
Fig. 6 As in Fig. 4 but for procedure PAE+TW.
Fig. 7
Fig. 7 As in Fig. 4 but for procedure PAE.
Fig. 8
Fig. 8 Upper and lower panels illustrate spectral values of average biases ψ (in percent) and of RMSD [sr−1], respectively, between SeaWiFS and AERONET-OC R rs products for satellite images acquired in November-February (N = 12), in March-April and September-October (N = 31), and in May-August (N = 39). Empty stars refer to satellite data retrieved with procedure P0, filled stars with procedure PTW, empty circles with procedure PAE, and gray circles with procedure PAE + TW (see Table 1).
Fig. 9
Fig. 9 Scatter plot of ξ Ltot i versus ζ w i at 765 and 865 nm for the whole SeaWiFS data sample (N = 82). Filled circles represent data acquired in May-August, grey circles indicate data acquired in November-February, while empty circles represent data acquired in the remaining period of the year.
Fig. 10
Fig. 10 Frequency distribution of ζ w i at 765 and 865 nm for a sample of 1124 SeaWiFS data acquired in correspondence of the AAOT between 1997 and 2008. Vertical full and dashed lines represent estimated average adjacency contribution ξ ¯ and standard deviation s, respectively [11].
Fig. 11
Fig. 11 Frequency distribution of ζ w i at 865 nm nm for a sample of 1124 SeaWiFS images acquired in correspondence of the AAOT in different intra-annual periods between 1997 and 2008. Vertical full and dashed lines represent estimated average adjacency contribution ξ ¯ and standard deviation s, respectively [11].

Tables (4)

Tables Icon

Table 1 Procedures P utilized to correct SeaWiFS satellite data with the SeaDAS 7 processing scheme.

Tables Icon

Table 2 Values of ψ and |ψ| (both in percent), and of RMSD (dimensionless), for τa determined at different center-wavelengths λ with the different procedures P. N=82.

Tables Icon

Table 3 Values of ψ and |ψ| (in percent) and of RMSD (dimensionless) for ν determined with the different procedures P. N=82.

Tables Icon

Table 4 Values of ψ and |ψ| (in percent) and of RMSD for Rrs(λ)/Rrs(555) determined at different center-wavelengths λ with the different procedures P. N = 82 at all center-wavelengths except for λ = 510 where N = 47.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

L tot = L R + L A +t L w ,
b bp (λ)= b bp (670) ( 670 λ ) 2.0[1.01.2exp(0.9 R rs (443)/ R rs (555))]
a pg (670)= e (ln(Chl)0.93893.7589) ;
R rs ( λ )=G( λ ) b b ( λ ) a( λ )+ b b ( λ ) ,
L tot = L R + L A +t L w + L adj ,
L adj =( ρ l π κ l R rs κ w ) C ρ=1 W
ψ= 1 N i=1 N ψ i
ψ i =100 i s i R i R .
| ψ |= 1 N i=1 N | ψ i |
RMSD= 1 N i=1 N | i s i R | 2 .
L adj ( x 0 , y 0 ; Θ v )={ [ L land (x,y;Θ) L w (x,y;Θ) L ss (x,y;Θ)]M(x,y) }h(x,y; x 0 , y 0 ;Θ, Θ v )
M(x,y)={ 1 for land elements 0 for water elements
L land = ρ l π E d ρ= ρ l
L w = R rs E d ρ= ρ sea ,
C ρ=1 ( x 0 , y 0 ; Θ v )= E d ρ=1 (x,y)/πM(x,y)h(x,y; x 0 , y 0 ;Θ, Θ v )
W( x 0 , y 0 ; Θ v )= L ss (x,y,Θ)M(x,y)h(x,y; x 0 , y 0 ;Θ, Θ v )
κ l = E d ρ= ρ l E d ρ=1 /π
κ w = E d ρ= ρ sea E d ρ=1 /π .
κ l = π(1S) 1 ρ l S
κ w = π(1S) 1 ρ sea S

Metrics