Abstract

We demonstrate a high-efficiency grating fabrication system, which can be used to inscribe a high-quality helical long period fiber grating (HLPFG) on single-mode fiber by means of hydrogen-oxygen flame. Such the HLPFG can be produced in enormous quantities with a uniform grating parameters and good reproducibility of grating inscription. Possible mechanisms for refractive index modulation in the HLPFG can be attributed to residual stress concentration by solidifying the periodic twisting stress under a fused status of optical fiber. Moreover, the HLPFG exhibits an excellence performance of high temperature sensing with a high sensitivity of ~132.8 pm/°C and a measuring range from room temperature to 900 °C. Comparing to the traditional LPFG fabricated by CO2 laser or arc discharge technique, the HLPFG has a low the bending and tensile strain sensitivity of 1.94 nm/(1/m) and 1.41 pm/με, respectively. So the proposed HLPFG could have a great potential in special applications as optical high-temperature sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor

R. Gao, Y. Jiang, and L. Jiang
Opt. Express 22(13) 15697-15709 (2014)

Embedded corrugated long-period fiber gratings for sensing applications

Hsiao-Yuh Wang, Shih-Min Chuo, Chih-Yu Huang, and Lon A. Wang
Appl. Opt. 51(10) 1453-1458 (2012)

Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings

Li Wang, Weigang Zhang, Biao Wang, Lei Chen, Zhiyong Bai, Shecheng Gao, Jieliang Li, Yongji Liu, Liyu Zhang, Quan Zhou, and Tieyi Yan
Appl. Opt. 53(30) 7045-7049 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
    [Crossref] [PubMed]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [Crossref]
  4. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
    [Crossref]
  5. R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
    [Crossref] [PubMed]
  6. A. Dragomir, D. N. Nikogosyan, K. A. Zagorul’ko, and P. G. Kryukov, “Inscription of long-period fibre gratings by femtosecond UV radiation,” in Optics and Photonics Technologies and Applications, W.J. Blau, J.F. Donegan, A.F. Duke, J.A. MacCraith, N.D. McMillan, G.M. Oconnor, E. Omongain, V. Toal, J.A. McLaughlin, eds. (2003), pp. 313–320.
  7. Y. P. Wang and Y. J. Rao, “CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre,” Electron. Lett. 40(18), 1101–1103 (2004).
    [Crossref]
  8. Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
    [Crossref]
  9. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
    [Crossref]
  10. G. Yin, J. Tang, C. Liao, and Y. Wang, “Automatic arc discharge technology for inscribing long period fiber gratings,” Appl. Opt. 55(14), 3873–3878 (2016).
    [Crossref] [PubMed]
  11. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [Crossref] [PubMed]
  12. M. L. von Bibra, A. Roberts, and J. Canning, “Fabrication of long-period fiber gratings by use of focused ion-beam irradiation,” Opt. Lett. 26(11), 765–767 (2001).
    [Crossref] [PubMed]
  13. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24(18), 1263–1265 (1999).
    [Crossref] [PubMed]
  14. H. Sakata and K. Yamahata, “Magnetic-force-induced long-period fiber gratings,” Opt. Lett. 37(7), 1250–1252 (2012).
    [Crossref] [PubMed]
  15. M. Yoon, S. Park, and Y. Han, “Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
    [Crossref]
  16. B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
    [Crossref] [PubMed]
  17. Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass Structure Changes in CO2-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
    [Crossref]
  18. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [Crossref]
  19. X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
    [Crossref]
  20. R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
    [Crossref]
  21. X. B. Cao, Y. Q. Liu, K. W. Wang, Q. Q. Wang, and T. Y. Wang, “Fabrication and Sensing Characteristics of Chiral Long-Period Fiber Gratings Written in the Single-Mode Fiber by CO2 Laser,” in 2016 15th International Conference on Optical Communications and Networks (2017), pp. 1–3.
  22. S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
    [Crossref] [PubMed]
  23. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
    [Crossref]
  24. S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
    [Crossref] [PubMed]
  25. H. Wu, S. Gao, B. Huang, Y. Feng, X. Huang, W. Liu, and Z. Li, “All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber,” Opt. Lett. 42(24), 5210–5213 (2017).
    [Crossref] [PubMed]
  26. C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).
  27. S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
    [Crossref] [PubMed]
  28. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  29. X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
    [Crossref] [PubMed]
  30. P. Wang and H. Li, “Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor,” Appl. Opt. 55(6), 1430–1434 (2016).
    [Crossref] [PubMed]
  31. Y. J. Rao, D. W. Duan, Y. E. Fan, T. Ke, and M. Xu, “High-Temperature Annealing Behaviors of CO2 Laser Pulse-Induced Long-Period Fiber Grating in a Photonic Crystal Fiber,” J. Lightwave Technol. 28(10), 1530–1535 (2010).
    [Crossref]
  32. L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
    [Crossref]
  33. S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
    [Crossref] [PubMed]
  34. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  35. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2018 (4)

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

2017 (2)

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

H. Wu, S. Gao, B. Huang, Y. Feng, X. Huang, W. Liu, and Z. Li, “All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber,” Opt. Lett. 42(24), 5210–5213 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

2014 (2)

2012 (2)

2010 (2)

2009 (1)

2004 (4)

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre,” Electron. Lett. 40(18), 1101–1103 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (1)

2001 (2)

1999 (2)

1998 (2)

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

1996 (3)

1991 (1)

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Ahn, T. J.

Bai, Z.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Bai, Z. Y.

Bennion, I.

Bergano, N. S.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Canning, J.

Cao, X. B.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Chehura, E.

Chiang, K. S.

Chung, Y.

Davidson, C. R.

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Duan, D. W.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Fan, Y. E.

Feng, Y.

Fu, C.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Fu, C. L.

Gao, S.

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Han, W. T.

Han, Y.

He, J.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Hirao, K.

Huang, B.

Huang, X.

Hwang, I. K.

James, S. W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

Kazansky, P. G.

Ke, T.

Kim, B. H.

Kim, B. Y.

Kim, D. Y.

Kondo, Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Lee, B. H.

Lee, H. W.

Lee, K. R.

Lemaire, P. J.

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Li, H.

Li, H. P.

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Li, L.

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

Li, Z.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

H. Wu, S. Gao, B. Huang, Y. Feng, X. Huang, W. Liu, and Z. Li, “All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber,” Opt. Lett. 42(24), 5210–5213 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Li, Z. L.

Liao, C.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

G. Yin, J. Tang, C. Liao, and Y. Wang, “Automatic arc discharge technology for inscribing long period fiber gratings,” Appl. Opt. 55(14), 3873–3878 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Liao, C. R.

Liu, S.

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Liu, W.

Liu, Y.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

Liu, Y. Q.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass Structure Changes in CO2-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
[Crossref]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

Mitsuyu, T.

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Nouchi, K.

Oh, S.

Paek, U. C.

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Park, S.

Park, Y.

Pedrazzani, J. R.

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Qu, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Rao, Y. J.

Y. J. Rao, D. W. Duan, Y. E. Fan, T. Ke, and M. Xu, “High-Temperature Annealing Behaviors of CO2 Laser Pulse-Induced Long-Period Fiber Grating in a Photonic Crystal Fiber,” J. Lightwave Technol. 28(10), 1530–1535 (2010).
[Crossref]

Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass Structure Changes in CO2-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre,” Electron. Lett. 40(18), 1101–1103 (2004).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Roberts, A.

Sakata, H.

Shu, X. W.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

Staines, S. E.

Subramanian, R.

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Sun, B.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Tang, J.

Tatam, R. P.

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

von Bibra, M. L.

Wang, D. D.

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

Wang, G.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Wang, P.

Wang, Q.

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Wang, T. Y.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

Wang, X. P.

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

Wang, Y.

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

G. Yin, J. Tang, C. Liao, and Y. Wang, “Automatic arc discharge technology for inscribing long period fiber gratings,” Appl. Opt. 55(14), 3873–3878 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Wang, Y. P.

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre,” Electron. Lett. 40(18), 1101–1103 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Watanabe, M.

Wong, R. Y. N.

Wu, H.

Xian, L. L.

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

Xu, M.

Yamahata, K.

Yang, K.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Yang, K. M.

Yin, G.

G. Yin, J. Tang, C. Liao, and Y. Wang, “Automatic arc discharge technology for inscribing long period fiber gratings,” Appl. Opt. 55(14), 3873–3878 (2016).
[Crossref] [PubMed]

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Yoon, M.

Yu, B.

Yun, S. H.

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Zeng, X. K.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Zhang, F.

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Zhang, Y.

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

Zhao, H.

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Zhao, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Zhong, X.

Zhou, J.

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

Zhu, C. L.

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

Zhu, T.

Appl. Opt. (3)

Electron. Lett. (3)

Y. P. Wang and Y. J. Rao, “CO2-laser induced LPFG torsion characteristics depending on length of twisted fibre,” Electron. Lett. 40(18), 1101–1103 (2004).
[Crossref]

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34(3), 302–303 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Subramanian, C. L. Zhu, H. Zhao, and H. P. Li, “Torsion, Strain, and Temperature Sensor Based on Helical Long-Period Fiber Gratings,” IEEE Photonics Technol. Lett. 30(4), 327–330 (2018).
[Crossref]

IEEE Sens. J. (1)

L. Zhang, Y. Q. Liu, X. B. Cao, and T. Y. Wang, “High sensitivity chiral long-period grating sensors written in the twisted fiber,” IEEE Sens. J. 16(11), 4253–4257 (2016).
[Crossref]

J. Appl. Phys. (1)

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Lightwave Technol. (8)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[Crossref]

M. Yoon, S. Park, and Y. Han, “Simultaneous measurement of strain and temperature by using a micro-tapered fiber grating,” J. Lightwave Technol. 30(8), 1156–1160 (2012).
[Crossref]

Y. Q. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass Structure Changes in CO2-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers,” J. Lightwave Technol. 27(7), 857–863 (2009).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Y. J. Rao, D. W. Duan, Y. E. Fan, T. Ke, and M. Xu, “High-Temperature Annealing Behaviors of CO2 Laser Pulse-Induced Long-Period Fiber Grating in a Photonic Crystal Fiber,” J. Lightwave Technol. 28(10), 1530–1535 (2010).
[Crossref]

C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating 2-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9(5), 598–604 (1991).
[Crossref]

C. L. Fu, S. Liu, Z. Y. Bai, J. He, C. R. Liao, Y. Wang, Z. L. Li, Y. Zhang, K. M. Yang, B. Yu, and Y. P. Wang, “Orbital Angular Momentum Mode Converter Based on Helical Long Period Fiber Grating Inscribed by Hydrogen-Oxygen Flame,” J. Lightwave Technol. 36(9), 1683 (2018).

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, “Heat transfer modelling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[Crossref]

Opt. Lasers Eng. (1)

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, “Bend-insensitive long-period fiber grating sensors,” Opt. Lasers Eng. 41(1), 233–239 (2004).
[Crossref]

Opt. Lett. (10)

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
[Crossref] [PubMed]

B. H. Kim, Y. Park, T. J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[Crossref] [PubMed]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[Crossref] [PubMed]

M. L. von Bibra, A. Roberts, and J. Canning, “Fabrication of long-period fiber gratings by use of focused ion-beam irradiation,” Opt. Lett. 26(11), 765–767 (2001).
[Crossref] [PubMed]

I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24(18), 1263–1265 (1999).
[Crossref] [PubMed]

H. Sakata and K. Yamahata, “Magnetic-force-induced long-period fiber gratings,” Opt. Lett. 37(7), 1250–1252 (2012).
[Crossref] [PubMed]

S. Oh, K. R. Lee, U. C. Paek, and Y. Chung, “Fabrication of helical long-period fiber gratings by use of a CO2 laser,” Opt. Lett. 29(13), 1464–1466 (2004).
[Crossref] [PubMed]

H. Wu, S. Gao, B. Huang, Y. Feng, X. Huang, W. Liu, and Z. Li, “All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber,” Opt. Lett. 42(24), 5210–5213 (2017).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

X. Zhong, Y. Wang, J. Qu, C. Liao, S. Liu, J. Tang, Q. Wang, J. Zhao, K. Yang, and Z. Li, “High-sensitivity strain sensor based on inflated long period fiber grating,” Opt. Lett. 39(18), 5463–5466 (2014).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

X. P. Wang, D. D. Wang, Q. Wang, L. L. Xian, and L. Li, “Fabrication and characterization of helical long-period fiber gratings in single-mode fibers,” Optik (Stuttg.) 158, 28–32 (2018).
[Crossref]

Sci. Rep. (2)

S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G. Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber rectangular air bubble,” Sci. Rep. 5(1), 7624 (2015).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, Y. Wang, J. He, C. Fu, K. Yang, Z. Bai, and F. Zhang, “Nano silica diaphragm in-fiber cavity for gas pressure measurement,” Sci. Rep. 7(1), 787 (2017).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Liu, Y. Zhang, C. Fu, Z. Bai, Z. Li, C. Liao, Y. Wang, J. He, Y. Liu, and Y. Wang, “Temperature insensitivity polarization-controlled orbital angular momentum mode converter based on an LPFG induced in four-mode fiber,” Sensors (Basel) 18(6), E1766 (2018).
[Crossref] [PubMed]

Other (2)

X. B. Cao, Y. Q. Liu, K. W. Wang, Q. Q. Wang, and T. Y. Wang, “Fabrication and Sensing Characteristics of Chiral Long-Period Fiber Gratings Written in the Single-Mode Fiber by CO2 Laser,” in 2016 15th International Conference on Optical Communications and Networks (2017), pp. 1–3.

A. Dragomir, D. N. Nikogosyan, K. A. Zagorul’ko, and P. G. Kryukov, “Inscription of long-period fibre gratings by femtosecond UV radiation,” in Optics and Photonics Technologies and Applications, W.J. Blau, J.F. Donegan, A.F. Duke, J.A. MacCraith, N.D. McMillan, G.M. Oconnor, E. Omongain, V. Toal, J.A. McLaughlin, eds. (2003), pp. 313–320.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of HLPFG inscription by use of a hydrogen-oxygen flame, and the insert is a schematic diagram of a helical long period fiber grating (HLPFG).
Fig. 2
Fig. 2 The transmission spectra of three HLPFG samples (HLPFG-1, HLPFG-2, and HLPFG-3)with different resonant wavelength of 1558.6, 1506.32, and 1459.72 nm, corresponding to different rotated rate of 183, 189 and 192 rpm, respectively.
Fig. 3
Fig. 3 (a) The transmission spectrum of a high-quality HLPFG’s sample with a wavelength range from 1250 to 1650 nm; (b) The measured transmission spectrum(corresponding to the two orthogonal polarizations: TE (blue) and TM (green)polarizations)and the PDL curve (red) of this sample; (c) The SEM along fiber axis direction and (d) SEM across-section of the HLPFG’s sample.
Fig. 4
Fig. 4 (a) The spectral evolution of the sample-A with the temperature rising from 100 to 900 , and (b) the temperature sensitivity is obtained to be about 132 pm/. (c) The spectral evolution of the sample-A with the temperature cooling down from 900 to 100 , and (d) corresponding to a temperature sensitivity of ~133 pm/.
Fig. 5
Fig. 5 (a) Schematic diagram of the experimental setup used for applying a continuous strain; (b) Measured resonant wavelength of sample-B as a function of tensile strain. Inset: transmission spectrum evolution of sample-B while the tensile strain increases from 0 to 1200με.
Fig. 6
Fig. 6 (a) Schematic diagram of the experimental setup is used for applying bending to the sample-C. (b) The measured resonant wavelength of sample-C as a function of the curvature. (c) The spectral evolution of sample-C with different curvature from 0 to 9.06 (1/m).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Λ= 60 V 2 /Ω
R 2 = L 2 + ( Rd ) 2 4
c=( 1 R )= 8d L 2 +4 d 2

Metrics