Abstract

Direct writing of single-mode waveguides into crystalline silicon using ps laser pulses is presented. The embedded structures were fabricated by moving the focal position along the beam axis with the help of a long distance microscope objective. In situ monitoring during inscription was performed to analyze the processing dynamics. The waveguide generation is based on pronounced multi-pulse interaction at moderate pulse energies around 100 nJ. All samples were characterized in terms of mode field distribution and damping losses. Calculations indicate an induced refractive index change in the range of 10−3 to 10−2. Moreover, a Y-splitter was realized to demonstrate the potential of this process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide inscription in Bismuth Germanate crystals using high repetition rate femtosecond lasers pulses

Christopher Miese, Simon Gross, Michael J. Withford, and Alexander Fuerbach
Opt. Mater. Express 5(2) 323-329 (2015)

Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

Thomas Allsop, Mykhaylo Dubov, Vladimir Mezentsev, and Ian Bennion
Appl. Opt. 49(10) 1938-1950 (2010)

Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime

Christopher Miese, Michael J. Withford, and Alexander Fuerbach
Opt. Express 19(20) 19542-19550 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ashish Dhiman, “Silicon photonics: a review,” IOSR Journal of Applied Physics 3(5), 67–79 (2013).
    [Crossref]
  2. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [Crossref]
  3. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  5. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
    [Crossref]
  6. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
    [Crossref]
  7. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  8. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
    [Crossref]
  9. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  10. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30(9), 964–966 (2005).
    [Crossref] [PubMed]
  11. P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).
  12. V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37(16), 3369–3371 (2012).
    [Crossref] [PubMed]
  13. A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
    [Crossref]
  14. E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
    [Crossref]
  15. M. Lipson, “Guiding, modulation, and emitting light on silicon–challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  16. M. Chambonneau, Q. Li, M. Chanal, N. Sanner, and D. Grojo, “Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses,” Opt. Lett. 41(21), 4875–4878 (2016).
    [Crossref] [PubMed]
  17. O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
    [Crossref] [PubMed]
  18. I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
    [Crossref] [PubMed]
  19. H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
    [Crossref]
  20. P. T. Landsberg and G. S. Kousik, “The connection between carrier lifetime and doping density in nondegenerate semiconductors,” J. Appl. Phys. 56(6), 1696–1700 (1984).
    [Crossref]
  21. R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys. 75(11), 7570–7572 (1994).
    [Crossref]
  22. C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
    [Crossref]
  23. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants – Silicon & Silicon (Amorphous), (Academic Press, 1985).
  25. D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5(8), 3017–3029 (1972).
    [Crossref]

2018 (1)

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

2017 (2)

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

2016 (2)

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
[Crossref]

M. Chambonneau, Q. Li, M. Chanal, N. Sanner, and D. Grojo, “Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses,” Opt. Lett. 41(21), 4875–4878 (2016).
[Crossref] [PubMed]

2014 (4)

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

2013 (1)

A. D. Ashish Dhiman, “Silicon photonics: a review,” IOSR Journal of Applied Physics 3(5), 67–79 (2013).
[Crossref]

2012 (1)

2010 (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

2006 (2)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

2005 (3)

2003 (1)

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

1996 (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[Crossref]

1994 (1)

R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys. 75(11), 7570–7572 (1994).
[Crossref]

1989 (1)

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[Crossref]

1984 (1)

P. T. Landsberg and G. S. Kousik, “The connection between carrier lifetime and doping density in nondegenerate semiconductors,” J. Appl. Phys. 56(6), 1696–1700 (1984).
[Crossref]

1972 (1)

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5(8), 3017–3029 (1972).
[Crossref]

Ashish Dhiman, A. D.

A. D. Ashish Dhiman, “Silicon photonics: a review,” IOSR Journal of Applied Physics 3(5), 67–79 (2013).
[Crossref]

Bek, A.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Brocas, A.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Burghoff, J.

Caccavale, F.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[Crossref]

Canioni, L.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Cerullo, G.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Chambonneau, M.

Chanal, M.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

M. Chambonneau, Q. Li, M. Chanal, N. Sanner, and D. Grojo, “Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses,” Opt. Lett. 41(21), 4875–4878 (2016).
[Crossref] [PubMed]

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Chen, F.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Clady, R.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Çolakoglu, T.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Davis, K. M.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

De Silvestri, S.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Dianov, E. M.

Elahi, P.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Ergeçen, E.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Gecevicius, M.

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Grojo, D.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

M. Chambonneau, Q. Li, M. Chanal, N. Sanner, and D. Grojo, “Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses,” Opt. Lett. 41(21), 4875–4878 (2016).
[Crossref] [PubMed]

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

Häcker, R.

R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys. 75(11), 7570–7572 (1994).
[Crossref]

Hangleiter, A.

R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys. 75(11), 7570–7572 (1994).
[Crossref]

Herman, P. R.

Hirao, K.

Hübner, R.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Huis Veld, A. J.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).

Ilday, F. Ö.

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Ilday, S.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Kadan, V.

Kämmer, H.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Kesim, D. K.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Kim, C. M.

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[Crossref]

Kononenko, V. V.

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
[Crossref]

V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37(16), 3369–3371 (2012).
[Crossref] [PubMed]

Konov, V. I.

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
[Crossref]

Konov, V. V.

Kousik, G. S.

P. T. Landsberg and G. S. Kousik, “The connection between carrier lifetime and doping density in nondegenerate semiconductors,” J. Appl. Phys. 56(6), 1696–1700 (1984).
[Crossref]

Landsberg, P. T.

P. T. Landsberg and G. S. Kousik, “The connection between carrier lifetime and doping density in nondegenerate semiconductors,” J. Appl. Phys. 56(6), 1696–1700 (1984).
[Crossref]

Laporta, P.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Li, Q.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Lipson, M.

Makey, G.

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Mansour, I.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[Crossref]

Marangoni, M.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Matthäus, G.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

Miura, K.

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Mouskeftaras, A.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Nejadmalayeri, A. H.

Nolte, S.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30(9), 964–966 (2005).
[Crossref] [PubMed]

Osellame, R.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Pavlov, I.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

Pavlova, S.

Pierce, D. T.

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5(8), 3017–3029 (1972).
[Crossref]

Polli, D.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Ramaswamy, R. V.

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[Crossref]

Ramponi, R.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Richardson, M.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Rode, A. V.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Römer, G. R. B. E.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).

Sanner, N.

Sarger, L.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Sentis, M.

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Spicer, W. E.

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5(8), 3017–3029 (1972).
[Crossref]

Sugimoto, N.

Taccheo, S.

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

Tokel, O.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

Tozburun, S.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Tünnermann, A.

Turan, R.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Turnali, A.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

Utéza, O.

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Verburg, P. C.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Will, M.

Yavuz, Ö.

I. Pavlov, O. Tokel, S. Pavlova, V. Kadan, G. Makey, A. Turnali, Ö. Yavuz, and F. Ö. Ilday, “Femtosecond laser written waveguides deep inside silicon,” Opt. Lett. 42(15), 3028–3031 (2017).
[Crossref] [PubMed]

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

Zavedeev, E. V.

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
[Crossref]

Zolfaghari Borra, M.

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Zoubir, A.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. Mouskeftaras, A. V. Rode, R. Clady, M. Sentis, O. Utéza, and D. Grojo, “Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses,” Appl. Phys. Lett. 105(19), 191103 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis Veld, “Two-temperature model for pulsed-laser-induced subsurface modifications in Si,” Appl. Phys., A Mater. Sci. Process. 114(18), 21958–21971 (2014).

H. Kämmer, G. Matthäus, S. Nolte, M. Chanal, O. Utéza, and D. Grojo, “In-volume structuring of silicon using picosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 124(4), 302 (2018).
[Crossref]

IEEE J. Solid-St. Circulation (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-St. Circulation 45, 235–248 (2010).

IEEE Micro (1)

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[Crossref]

IOSR Journal of Applied Physics (1)

A. D. Ashish Dhiman, “Silicon photonics: a review,” IOSR Journal of Applied Physics 3(5), 67–79 (2013).
[Crossref]

J. Appl. Phys. (2)

P. T. Landsberg and G. S. Kousik, “The connection between carrier lifetime and doping density in nondegenerate semiconductors,” J. Appl. Phys. 56(6), 1696–1700 (1984).
[Crossref]

R. Häcker and A. Hangleiter, “Intrinsic upper limits of the carrier lifetime in silicon,” J. Appl. Phys. 75(11), 7570–7572 (1994).
[Crossref]

J. Lightwave Technol. (3)

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[Crossref]

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[Crossref]

M. Lipson, “Guiding, modulation, and emitting light on silicon–challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

JOSA B (2)

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” JOSA B 20(7), 1559–1567 (2003).
[Crossref]

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser-modified fused silica and application to waveguide fabrication,” JOSA B 22(10), 2138–2143 (2005).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Laser Phys. (1)

E. V. Zavedeev, V. V. Kononenko, and V. I. Konov, “Delocalization of femtosecond laser radiation in crystalline Si in the mid-IR range,” Laser Phys. 26(1), 016101 (2016).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31(08), 620–625 (2006).
[Crossref]

Nat. Photonics (1)

O. Tokel, A. Turnalı, G. Makey, P. Elahi, T. Çolakoğlu, E. Ergeçen, Ö. Yavuz, R. Hübner, M. Zolfaghari Borra, I. Pavlov, A. Bek, R. Turan, D. K. Kesim, S. Tozburun, S. Ilday, and F. Ö. Ilday, “In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon,” Nat. Photonics 11(10), 639–645 (2017).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (1)

D. T. Pierce and W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5(8), 3017–3029 (1972).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants – Silicon & Silicon (Amorphous), (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the waveguide writing setup. The direction of waveguide writing is along the laser beam axis starting at the back-side of silicon. (b) Snapshot during in situ monitoring recorded with (a). The bright spot is the induced plasma at the focal position of the laser during processing. The dark vertical lines are already generated waveguides.
Fig. 2
Fig. 2 (a) Setup for waveguide characterization. (b) Broadband illumination of a set of waveguides recorded with this setup. During first inspections, laser generated modifications, which support waveguiding could be easily identified due to a bright region at the modification center. Processing parameters were: pulse repetition rate 400 kHz, writing speed = 20 µm/s.
Fig. 3
Fig. 3 (a) Typical near-field intensity distribution and (b) cut through the near-field center in x and y orientation (coupling laser wavelength = 1550 nm). Processing parameters were: pulse energy = 110 nJ, repetition rate = 400 kHz, writing speed = 20 µm/s.
Fig. 4
Fig. 4 Set of modifications written at higher pulse energies. For better visibility, the aperture of the imaging system was reduced to improve the depth of field. Processing parameters: pulse repetition rate = 400 kHz, writing speed = 20 µm/s.
Fig. 5
Fig. 5 (a) Measurement of the scattered light distribution perpendicular to the waveguide axis (coupling laser wavelength = 1550 nm). (b) Evaluation of damping losses based on (a). The values were filtered using a moving average filter over 24 pixel (33 µm). This measurement corresponds to the waveguide displayed in Fig. 3.
Fig. 6
Fig. 6 (a) Normalized near-field distribution of the laser source at the waveguide entrance using a standard microscope objective (20 x, NA = 0.35) and (b) normalized near-field distribution at the waveguide outlet (coupling laser wavelength = 1550 nm). Solving the overlap integral yielded a coupling efficiency of ≈53%.
Fig. 7
Fig. 7 Calculated refractive index distribution for a wavelength of 1550 nm, obtained by solving the Helmholtz equation. (a) Cut along x and y direction through the center, (b) surface plot.
Fig. 8
Fig. 8 Comparison of simulated and measured mode profile using “BeamPROP” (coupling laser wavelength = 1550 nm). The measured profile corresponds to Fig. 3. The numerical simulation is based on the refractive index profile given in Fig. 7.
Fig. 9
Fig. 9 Characterization of the Y-splitter. (a) Normalized near-field distribution at the entrance. (b) Normalized near-field distribution at the outlet. (c) Scattered light distribution along the Y-splitter, plotted logarithmically for better visibility. The damping losses were around 4.5 dB/mm.

Metrics