Abstract

In this paper, we experimentally demonstrate the transmission of 56 Gbaud four-level pulse amplitude modulation (PAM4) signal over 2-km single mode fiber (SMF) with intensity modulation and direct detection (IM/DD) scheme, while the bit-error-ratio (BER) of the PAM4 signal is under hard-decision forward error correction (HD-FEC) threshold of 3.8 × 10−3. Linear pre-equalization is implemented in the transmitter side with a 3-tap finite-impulse-response (FIR) filter to compensate for the intersymbol interference (ISI) induced by system bandwidth limitation. Receiver side equalization is realized with training sequence (TS) based feed-forward equalizer (FFE) with decision-feedback equalizer (DFE). Furthermore, an Adaptive Notch Filter (ANF) is proposed to suppress the digital-to-analog converter (DAC) clock leakage induced narrowband interference for the first time, and the bandwidth of the ANF is optimized to achieve the best BER performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission

Dongdong Zou, Yongchao Chen, Zibin Li, Fan Li, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Xingwen Yi, and Zhaohui Li
Opt. Express 27(4) 5696-5702 (2019)

C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

100 Gbit/s VSB-PAM-n IM/DD transmission system based on 10 GHz DML with optical filtering and joint nonlinear equalization

Jiao Zhang, Jianjun Yu, Xinying Li, Yiran Wei, Kaihui Wang, Li Zhao, Wen Zhou, Miao Kong, Xiaolong Pan, Bo Liu, and Xiangjun Xin
Opt. Express 27(5) 6098-6105 (2019)

References

  • View by:
  • |
  • |
  • |

  1. IEEE P802.3bs 400 Gb/s Ethernet Task Force [Online]. Available: http://www.ieee802.org/3/bm/index.html .
  2. F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental demonstration of four-channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km optical interconnect,” J. Lightwave Technol. 35(4), 941–948 (2017).
    [Crossref]
  3. K. P. Zhong, W. Chen, Q. Sui, J. Man, A. P. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference2015, paper Th3A.3.
    [Crossref]
  4. N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
    [Crossref]
  5. J. Lee, S. Shahramian, N. Kaneda, Y. Baeyens, J. Sinsky, L. Buhl, J. Weiner, U. Koc, A. Konczykowska, J. Dupuy, F. Jorge, R. Aroca, T. Pfau, and Y. Chen, “Demonstration of 112-Gbit/s optical transmission using 56 GBaud PAM-4 driver and clock-and-data recovery ICs,” in Eur. Conf. Opt. Commun. (2015), paper Mo.4.5.4.
  6. J. Man, W. Chen, X. Song, and L. Zeng, “A low-cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation,” in Optical Fiber Communication Conference (2014), paper M2E.7.
    [Crossref]
  7. J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100Gb/s PAM-4, CAP-16 and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  8. M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct detection solutions for 100G and beyond,” in Optical Fiber Communication Conference (2017), paper Tu3I.3.
    [Crossref]
  9. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  10. C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference (2015), paper Tu2H.2.
    [Crossref]
  11. I. O. Miguel, T. Zuo, B. J. Jesper, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of Multi-CAP signal in 14 GHz bandwidth per lane,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper PDP5C.10.
  12. P. Pupalaikis, B. Yamrone, R. Delbue, A. Khanna, K. Doshi, B. Bhat, and A. Sureka, “Technologies for very high bandwidth real-time oscilloscopes,” in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meet. 2014, pp. 128–135.
    [Crossref]
  13. C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
    [Crossref]
  14. C. Laperle and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32(4), 629–643 (2014).
    [Crossref]
  15. F. Li, X. Li, and J. Yu, “Performance comparison of DFT-Spread and pre-Equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
    [Crossref]
  16. Y. Zhu, W. Peng, Y. Cui, C. Kan, F. Zhu, and Y. Bai, “Comparative digital mitigations of DAC clock tone leakage in a single-carrier 400G system,” in Optical Fiber Communication Conference (2015), paper Th2A.17.
    [Crossref]
  17. B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
    [Crossref]

2017 (3)

2015 (2)

2014 (1)

1975 (1)

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Bao, Y.

Cao, Z.

Chen, M.

Chi, N.

Dochhan, A.

Dong, E.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Eiselt, M. H.

Eiselt, N.

Glover, J. R.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Goodlin, R. C.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Griesser, H.

Hearn, R. H.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Hohenleitner, R.

Kaunitz, J.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Laperle, C.

Li, F.

Li, J.

Li, X.

Li, Z.

Liu, G. N.

Mccool, J. M.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Monroy, I. T.

Neumeyr, C.

O’Sullivan, M.

Olmos, J. J. V.

Ortsiefer, M.

Shi, J.

Wang, Y.

Wei, J.

Widrow, B.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Williams, C. S.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Xu, X.

Yu, J.

Zeidler, J. R.

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, X.

Zhong, Q.

Zhou, E.

Zhou, Y.

Zuo, T.

J. Lightwave Technol. (5)

Opt. Express (1)

Proc. IEEE (1)

B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Other (10)

IEEE P802.3bs 400 Gb/s Ethernet Task Force [Online]. Available: http://www.ieee802.org/3/bm/index.html .

K. P. Zhong, W. Chen, Q. Sui, J. Man, A. P. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference2015, paper Th3A.3.
[Crossref]

J. Lee, S. Shahramian, N. Kaneda, Y. Baeyens, J. Sinsky, L. Buhl, J. Weiner, U. Koc, A. Konczykowska, J. Dupuy, F. Jorge, R. Aroca, T. Pfau, and Y. Chen, “Demonstration of 112-Gbit/s optical transmission using 56 GBaud PAM-4 driver and clock-and-data recovery ICs,” in Eur. Conf. Opt. Commun. (2015), paper Mo.4.5.4.

J. Man, W. Chen, X. Song, and L. Zeng, “A low-cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation,” in Optical Fiber Communication Conference (2014), paper M2E.7.
[Crossref]

M. H. Eiselt, N. Eiselt, and A. Dochhan, “Direct detection solutions for 100G and beyond,” in Optical Fiber Communication Conference (2017), paper Tu3I.3.
[Crossref]

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection,” in Optical Fiber Communication Conference (2015), paper Tu2H.2.
[Crossref]

I. O. Miguel, T. Zuo, B. J. Jesper, Q. Zhong, X. Xu, and I. T. Monroy, “Towards 400GBASE 4-lane solution using direct detection of Multi-CAP signal in 14 GHz bandwidth per lane,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper PDP5C.10.

P. Pupalaikis, B. Yamrone, R. Delbue, A. Khanna, K. Doshi, B. Bhat, and A. Sureka, “Technologies for very high bandwidth real-time oscilloscopes,” in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meet. 2014, pp. 128–135.
[Crossref]

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

Y. Zhu, W. Peng, Y. Cui, C. Kan, F. Zhu, and Y. Bai, “Comparative digital mitigations of DAC clock tone leakage in a single-carrier 400G system,” in Optical Fiber Communication Conference (2015), paper Th2A.17.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of LMS based ANF.
Fig. 2
Fig. 2 Experimental setup of 56 Gbaud PAM4 signal transmission in IM/DD system.
Fig. 3
Fig. 3 (a) Optical spectra, electrical spectra of received 56Gbaud PAM4 signal (b) without pre-equalization and (c) with pre-equalization.
Fig. 4
Fig. 4 Electrical spectra of (a) narrowband interference canceller output (b) filtered narrowband interference.
Fig. 5
Fig. 5 Eye diagrams of 56Gbaud PAM4 in EBTB (a) without and (b) with ANF in the DSP.
Fig. 6
Fig. 6 BER distribution with different reference signal amplitude and step size in ANF.
Fig. 7
Fig. 7 Recovered signal with (a) equal-spaced and (b) unequal-spaced PAM4.
Fig. 8
Fig. 8 Measured BER versus ROP in OBTB (a) with Pre-equalization FIR and ANF and (b) under different FFE and DFE taps.
Fig. 9
Fig. 9 Measured BER of 112Gbit/s PAM4 versus ROP after fiber transmission.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y k = w k H x k
ε k = d k y k
w k + 1 = w k + 2 μ ε k x k *
B = 2 μ A 2 / T

Metrics