Abstract

We experimentally demonstrate nonlinear noise compensation in an optical phase conjugation assisted 1st order Raman amplified 30x30Gbaud DP-QPSK transmission system with a spectral efficiency of 3.6b/s/Hz. We show that by optimizing the link symmetry, even with only 1st order Raman amplification a single, mid-link, optical phase conjugation compensates for 90% of the signal-signal nonlinear interference resulting in a 2.3dB performance enhancement. We show that increasing the number of optical phase conjugations in the presence of 10% residual nonlinearity results in a reduction in the performance enhancement owing to an enhancement in the nonlinear noise generation efficiency of the system. We achieve a record 72% optical phase conjugation enabled reach enhancement of the 30x30Gbaud DP-QPSK signals.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems

Mohammad A. Z. Al-Khateeb, Mary E. McCarthy, Christian Sánchez, and Andrew D. Ellis
Opt. Express 26(18) 23945-23959 (2018)

Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation

Mohammad A. Z. Al-Khateeb, Md. Asif Iqbal, Mingming Tan, Abdallah Ali, Mary McCarthy, Paul Harper, and Andrew D. Ellis
Opt. Express 26(3) 3145-3160 (2018)

Raman-enhanced optical phase conjugator in WDM transmission systems

Chaoran Huang and Chester Shu
Opt. Express 26(8) 10274-10281 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
    [Crossref]
  2. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52 (1979).
    [Crossref] [PubMed]
  3. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [Crossref] [PubMed]
  4. D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
    [Crossref]
  5. R. Dar and P. J. Winzer, “On the Limits of Digital Back-Propagation in Fully Loaded WDM Systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
    [Crossref]
  6. E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.
  7. A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
    [Crossref] [PubMed]
  8. M. H. Shoreh, “Compensation of nonlinearity impairments in coherent optical OFDM systems using multiple optical phase conjugate modules,” J. Opt. Commun. Netw. 6(6), 549–558 (2014).
    [Crossref]
  9. M. A. Z. Al-Khateeb, M. A. Iqbal, M. Tan, A. Ali, M. McCarthy, P. Harper, and A. D. Ellis, “Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation,” Opt. Express 26(3), 3145–3160 (2018).
    [Crossref] [PubMed]
  10. M. A. Z. Al-Khateeb, M. E. Mccarthy, and A. Ellis, “Performance Enhancement Prediction for Optical Phase Conjugation in Systems with 100km Amplifier Spacing,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2017), p. Th.1.F.4.
    [Crossref]
  11. A. D. Ellis, M. Tan, M. A. Iqbal, A. Z. A.-K. Mohammad, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
    [Crossref]
  12. K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” in 2014 The European Conference on Optical Communication (ECOC) (2014), p. 1–3 (We.2.5.4).
    [Crossref]
  13. H. Hu, R. M. Jopson, A. H. Gnauck, S. Randel, and S. Chandrasekhar, “Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations,” Opt. Express 25(3), 1618–1628 (2017).
    [Crossref] [PubMed]
  14. T. Umeki, T. Kazama, A. Sano, K. Shibahara, K. Suzuki, M. Abe, H. Takenouchi, and Y. Miyamoto, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express 24(15), 16945–16951 (2016).
    [Crossref] [PubMed]
  15. K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
    [Crossref]
  16. S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
    [Crossref]
  17. I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
    [Crossref]
  18. S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
    [Crossref]
  19. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
    [Crossref] [PubMed]
  20. M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
    [Crossref] [PubMed]
  21. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [Crossref] [PubMed]
  22. M. A. Z. Al-Khateeb, M. McCarthy, C. Sánchez, and A. Ellis, “Effect of second order signal-noise interactions in nonlinearity compensated optical transmission systems,” Opt. Lett. 41(8), 1849–1852 (2016).
    [Crossref] [PubMed]
  23. A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
    [Crossref]
  24. ITU-T, Forward Error Correction for High Bit-Rate DWDM Submarine Systems, Recommendation (G.975.1).

2018 (1)

2017 (2)

H. Hu, R. M. Jopson, A. H. Gnauck, S. Randel, and S. Chandrasekhar, “Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations,” Opt. Express 25(3), 1618–1628 (2017).
[Crossref] [PubMed]

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

2016 (7)

M. A. Z. Al-Khateeb, M. McCarthy, C. Sánchez, and A. Ellis, “Effect of second order signal-noise interactions in nonlinearity compensated optical transmission systems,” Opt. Lett. 41(8), 1849–1852 (2016).
[Crossref] [PubMed]

T. Umeki, T. Kazama, A. Sano, K. Shibahara, K. Suzuki, M. Abe, H. Takenouchi, and Y. Miyamoto, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express 24(15), 16945–16951 (2016).
[Crossref] [PubMed]

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

A. D. Ellis, M. Tan, M. A. Iqbal, A. Z. A.-K. Mohammad, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Dar and P. J. Winzer, “On the Limits of Digital Back-Propagation in Fully Loaded WDM Systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

2015 (1)

2014 (1)

2012 (1)

2011 (1)

2008 (1)

2006 (2)

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

1979 (1)

Abe, M.

Al Kahteeb, M. A. Z.

Al Khateeb, M. A. Z.

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

Ali, A.

Alic, N.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Al-Khateeb, M. A. Z.

Alvarado, A.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Ataie, V.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Bayvel, P.

Chandrasekhar, S.

Chen, X.

Dangui, V.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Dar, R.

R. Dar and P. J. Winzer, “On the Limits of Digital Back-Propagation in Fully Loaded WDM Systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

De Waardt, H.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Doran, N.

Doran, N. J.

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Ellis, A.

M. A. Z. Al-Khateeb, M. McCarthy, C. Sánchez, and A. Ellis, “Effect of second order signal-noise interactions in nonlinearity compensated optical transmission systems,” Opt. Lett. 41(8), 1849–1852 (2016).
[Crossref] [PubMed]

M. A. Z. Al-Khateeb, M. E. Mccarthy, and A. Ellis, “Performance Enhancement Prediction for Optical Phase Conjugation in Systems with 100km Amplifier Spacing,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2017), p. Th.1.F.4.
[Crossref]

Ellis, A. D.

M. A. Z. Al-Khateeb, M. A. Iqbal, M. Tan, A. Ali, M. McCarthy, P. Harper, and A. D. Ellis, “Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation,” Opt. Express 26(3), 3145–3160 (2018).
[Crossref] [PubMed]

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

A. D. Ellis, M. Tan, M. A. Iqbal, A. Z. A.-K. Mohammad, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Fabbri, S.

A. D. Ellis, M. Tan, M. A. Iqbal, A. Z. A.-K. Mohammad, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Fekete, D.

Ferreira, F. M.

Gao, G.

Giacoumidis, E.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Gnauck, A. H.

Goldfarb, G.

Gordienko, V.

Hardcastle, I.

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

Harper, P.

Hu, H.

Inoue, T.

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
[Crossref]

K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” in 2014 The European Conference on Optical Communication (ECOC) (2014), p. 1–3 (We.2.5.4).
[Crossref]

Iqbal, M. A.

Ives, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Jansen, S. L.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Jopson, R. M.

Kanesan, T.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Kazama, T.

Khoe, G.-D.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Kim, I.

Krummrich, P. M.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Kuo, B. P. P.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Lavery, D.

Le, S. T.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Li, G.

Li, X.

Liga, G.

Maher, R.

Mateo, E.

McCarthy, M.

M. A. Z. Al-Khateeb, M. A. Iqbal, M. Tan, A. Ali, M. McCarthy, P. Harper, and A. D. Ellis, “Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation,” Opt. Express 26(3), 3145–3160 (2018).
[Crossref] [PubMed]

M. A. Z. Al-Khateeb, M. McCarthy, C. Sánchez, and A. Ellis, “Effect of second order signal-noise interactions in nonlinearity compensated optical transmission systems,” Opt. Lett. 41(8), 1849–1852 (2016).
[Crossref] [PubMed]

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

McCarthy, M. E.

Miyamoto, Y.

Mohammad, A. Z. A.-K.

Mondaca, G. S.

Myslivets, E.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Namiki, S.

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” in 2014 The European Conference on Optical Communication (ECOC) (2014), p. 1–3 (We.2.5.4).
[Crossref]

S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
[Crossref]

O’Sullivan, M.

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

Pelusi, M.

Pepper, D. M.

Perentos, A.

Phillips, I.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Phillips, I. D.

Radic, S.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Rafique, D.

Randel, S.

Roberts, K.

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

Rosa, P.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Sánchez, C.

Sano, A.

Savory, S. J.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

Shibahara, K.

Shieh, W.

Shoreh, M. H.

Solis-Trapala, K.

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” in 2014 The European Conference on Optical Communication (ECOC) (2014), p. 1–3 (We.2.5.4).
[Crossref]

S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
[Crossref]

Sorokina, M.

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

Spalter, S.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Stephens, M. F.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Stephens, M. F. C.

Strawczynski, L.

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

Suzuki, K.

Sygletos, S.

Takenouchi, H.

Tan, H. N.

K. Solis-Trapala, M. Pelusi, H. N. Tan, T. Inoue, and S. Namiki, “Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations,” J. Lightwave Technol. 34(2), 431–440 (2016).
[Crossref]

S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
[Crossref]

Tan, M.

Temprana, E.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Turitsyn, S. K.

A. D. Ellis, M. Tan, M. A. Iqbal, A. Z. A.-K. Mohammad, V. Gordienko, G. S. Mondaca, S. Fabbri, M. F. C. Stephens, M. E. McCarthy, A. Perentos, I. D. Phillips, D. Lavery, G. Liga, R. Maher, P. Harper, N. Doran, S. K. Turitsyn, S. Sygletos, and P. Bayvel, “4 Tb/s Transmission Reach Enhancement Using 10 × 400 Gb/s Super-Channels and Polarization Insensitive Dual Band Optical Phase Conjugation,” J. Lightwave Technol. 34(8), 1717–1723 (2016).
[Crossref]

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

Umeki, T.

Van Den Borne, D.

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

Vusirikala, V.

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

Winzer, P. J.

R. Dar and P. J. Winzer, “On the Limits of Digital Back-Propagation in Fully Loaded WDM Systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

Yaman, F.

Yariv, A.

Adv. Opt. Photonics (1)

A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, and N. J. Doran, “Performance limits in optical communications due to fiber nonlinearity,” Adv. Opt. Photonics 9(3), 429–503 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Jansen, D. Van Den Borne, P. M. Krummrich, S. Spalter, G.-D. Khoe, and H. De Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 505–520 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. J. Savory, and P. Bayvel, “The Benefit of Split Nonlinearity Compensation for Single-Channel Optical Fiber Communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Dar and P. J. Winzer, “On the Limits of Digital Back-Propagation in Fully Loaded WDM Systems,” IEEE Photonics Technol. Lett. 28(11), 1253–1256 (2016).
[Crossref]

K. Roberts, L. Strawczynski, M. O’Sullivan, and I. Hardcastle, “Electronic precompensation of optical nonlinearity,” IEEE Photonics Technol. Lett. 18(2), 403–405 (2006).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (8)

A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015).
[Crossref] [PubMed]

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
[Crossref] [PubMed]

D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
[Crossref] [PubMed]

G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
[Crossref] [PubMed]

T. Umeki, T. Kazama, A. Sano, K. Shibahara, K. Suzuki, M. Abe, H. Takenouchi, and Y. Miyamoto, “Simultaneous nonlinearity mitigation in 92 × 180-Gbit/s PDM-16QAM transmission over 3840 km using PPLN-based guard-band-less optical phase conjugation,” Opt. Express 24(15), 16945–16951 (2016).
[Crossref] [PubMed]

H. Hu, R. M. Jopson, A. H. Gnauck, S. Randel, and S. Chandrasekhar, “Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations,” Opt. Express 25(3), 1618–1628 (2017).
[Crossref] [PubMed]

M. A. Z. Al-Khateeb, M. A. Iqbal, M. Tan, A. Ali, M. McCarthy, P. Harper, and A. D. Ellis, “Analysis of the nonlinear Kerr effects in optical transmission systems that deploy optical phase conjugation,” Opt. Express 26(3), 3145–3160 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (6)

M. A. Z. Al-Khateeb, M. E. Mccarthy, and A. Ellis, “Performance Enhancement Prediction for Optical Phase Conjugation in Systems with 100km Amplifier Spacing,” in Proc. European Conference and Exhibition on Optical Communication (ECOC) (2017), p. Th.1.F.4.
[Crossref]

K. Solis-Trapala, T. Inoue, and S. Namiki, “Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system,” in 2014 The European Conference on Optical Communication (ECOC) (2014), p. 1–3 (We.2.5.4).
[Crossref]

E. Temprana, E. Myslivets, V. Ataie, B. P. P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of Coherent Transmission Reach Tripling by Frequency-Referenced Nonlinearity Pre-compensation in EDFA-only SMF Link,” in ECOC2016;42nd European Conference on Optical Communication, 2016, pp. 1–3.

I. Phillips, M. Tan, M. F. Stephens, M. McCarthy, E. Giacoumidis, S. Sygletos, P. Rosa, S. Fabbri, S. T. Le, T. Kanesan, S. K. Turitsyn, N. J. Doran, P. Harper, and A. D. Ellis, “Exceeding the Nonlinear-Shannon Limit using Raman Laser Based Amplification and Optical Phase Conjugation,” in Optical Fiber Communication Conference (2014), p. M3C.1.
[Crossref]

S. Namiki, H. N. Tan, K. Solis-trapala, and T. Inoue, “Signal-transparent wavelength conversion and light-speed back propagation through fiber,” in Optical Fiber Communication Conference 2016 (2016), pp. 9–11.
[Crossref]

ITU-T, Forward Error Correction for High Bit-Rate DWDM Submarine Systems, Recommendation (G.975.1).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Experimental setup for spectrally efficient, comb-based transmitter system. (b) The optical spectrum of 30x30Gbaud DP-QPSK generated at the output of the transmitter. WSS: wavelength selective switch, AWG: arbitrary waveform generator.
Fig. 2
Fig. 2 Experimental setup of dual-band, polarization insensitive, dual pump OPC. AWG: arbitrary waveform generator, PM: phase modulator, PC: polarization controller, FBG: fiber Bragg grating, PBC: polarization beam combiner, WSS: wavelength selective switch, HNLF: highly nonlinear fiber, OBPF: optical band-pass filter.
Fig. 3
Fig. 3 (a) Optical spectrum at the output monitor points of the OPC (on both paths). (b) Received EVM2(dB) factor as a function of OSNR. Bc2Bc: back-to-back.
Fig. 4
Fig. 4 (a) Optical spectrum with and without OPC, at maximum OSNR. (b) EVM2(dB) of the individual channels with and without OPC, at maximum OSNR.
Fig. 5
Fig. 5 (a) Experimental setup of OPC assisted distributed Raman amplified transmission system. (b) Normalized power profile of signals propagating through the two 1st order distributed Raman amplified spans. (c) Multi-OPC deployment technique. VOA: variable optical attenuator, SW: switch, PC: polarization controller, SMF: single mode fiber, WDM: wavelength-division multiplexer, GFF: gain flattening filter, BPF: band-pass filter.
Fig. 6
Fig. 6 EVM2 as a function of signal power at the optimum signal power measured at 2400km without OPC, 1-OPC, 2-OPC, and 3-OPC.
Fig. 7
Fig. 7 EVM2 (in dB) as a function of distance.
Fig. 8
Fig. 8 Optical spectrum (resolution 0.1nm) and BER per channel of the received signals at the maximum distance of EDC system and mid-link OPC assisted system.

Metrics