Abstract

Dielectric nanoantenna-based metasurfaces have attracted wide attention for their outstanding performance in light manipulation with low loss and full phase coverage enabled by multipolar resonances. To make the metasurfaces actively tunable, we adopt a kind of phase-changing material Ge2Sb2Te5 to construct non-volatile, switchable antenna-based metasurfaces in the mid-infrared spectrum region. Our design of the metasurface can realize switching between electric and magnetic dipole resonances across a broad spectrum region through crystalline-amorphous phase transitions under fixed design. Moreover, the transmission switching contrast between different phases can be up to 30dB (−30dB), due to the shift of multipolar resonances. This reconfigurable antenna-based metasurface will pave the way for ultimate design of light modulators, deflectors, holograms and so on for future optical communication networks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

Jingyi Tian, Yuanqing Yang, Min Qiu, Fredrik Laurell, Valdas Pasiskevicius, and Hoon Jang
Opt. Express 25(20) 24068-24080 (2017)

Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer
Opt. Mater. Express 8(8) 2264-2275 (2018)

All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials

E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
    [Crossref]
  3. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
    [Crossref]
  4. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
    [Crossref]
  5. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  6. J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
    [Crossref]
  7. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  8. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
    [Crossref] [PubMed]
  9. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250 (2014).
    [Crossref]
  10. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
    [Crossref] [PubMed]
  11. R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
    [Crossref] [PubMed]
  12. J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
    [Crossref] [PubMed]
  13. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
    [Crossref]
  14. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  15. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  16. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
    [Crossref] [PubMed]
  17. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  18. K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
    [Crossref] [PubMed]
  19. B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref] [PubMed]
  20. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625 (2017).
    [Crossref]
  21. Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  22. C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
    [Crossref]
  23. Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
    [Crossref]
  24. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
    [Crossref] [PubMed]
  25. J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
    [Crossref] [PubMed]
  26. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
    [Crossref]
  27. G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
    [Crossref]
  28. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  29. L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
    [Crossref] [PubMed]
  30. K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
    [Crossref] [PubMed]
  31. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
    [Crossref]
  32. C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
    [Crossref]
  33. Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
    [Crossref] [PubMed]
  34. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
    [Crossref]
  35. A. V. Pogrebnyakov, J. A. Bossard, J. P. Turpin, J. D. Musgraves, B. J. Shin, C. Riverobaleine, N. Podraza, K. A. Richardson, D. H. Werner, and T. S. Mayer, “Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material,” Opt. Mater. Express 8(8), 2264–2275 (2018).
    [Crossref]
  36. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
    [Crossref]
  37. Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
    [Crossref] [PubMed]
  38. J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
    [Crossref] [PubMed]
  39. Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
    [Crossref]

2018 (9)

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

A. V. Pogrebnyakov, J. A. Bossard, J. P. Turpin, J. D. Musgraves, B. J. Shin, C. Riverobaleine, N. Podraza, K. A. Richardson, D. H. Werner, and T. S. Mayer, “Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material,” Opt. Mater. Express 8(8), 2264–2275 (2018).
[Crossref]

2017 (9)

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625 (2017).
[Crossref]

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

2016 (8)

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

2015 (6)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

2014 (4)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
[Crossref]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

2013 (1)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

2012 (1)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

2008 (1)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Aieta, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Albella, P.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Alexeev, A. M.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625 (2017).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arbabi, E.

Au, Y.-Y.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Averitt, R. D.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Ayas, S.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bai, S.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Bakan, G.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
[Crossref]

Basov, D. N.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Bender, D. A.

Bertolotti, J.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Bossard, J. A.

Bozhevolnyi, S. I.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Bykov, A. Y.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Cai, L.

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Campione, S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250 (2014).
[Crossref]

Capasso, F.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Celebi, K.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Chae, B. G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chen, J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Chen, T. Y.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, Y. H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Cheng, Z.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Cheng, Z. Y.

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Chong, K. E.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Chu, C. H.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chu, W.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Clem, P. G.

Cryan, M.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Dana, A.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

de Galarreta, C. R.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Decker, M.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Ding, J. C.

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

Dominguez, J.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dong, F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Du, K.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Evans, P. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, K.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625 (2017).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Gholipour, B.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Ghosh, P.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Ginn, J.

Gong, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Gong, Q.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Gong, Y.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Gonzaga, L.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

Haglund, R. F.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Hanham, S. M.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hong, M.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4(6), 625 (2017).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hsieh, W. T.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Ihlefeld, J. F.

James, A.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Jang, H.

Jokerst, N. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Jun, Y. C.

Kamali, S. M.

Karvounis, A.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Kay, A. Y.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kim, H. T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Klemm, M.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Laurell, F.

Li, Q.

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Li, Q. T.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Li, Y.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Liu, S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1(4), 250 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, X.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Lopez-Garcia, M.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Lu, H. T.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Lu, J.

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

Luk, T. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Luo, H.

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Lyu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Lyu, Y. B.

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

Ma, Z.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

MacDonald, K. F.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Mahony, T. S.

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Mayer, T. S.

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
[Crossref]

Minovich, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Miroshnichenko, A. E.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Murzina, T. V.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

Musgraves, J. D.

Neshev, D. N.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Ng, B.

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

Ozgur, E.

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Padilla, W. J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Palit, S.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Pan, M.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Pasiskevicius, V.

Pei, X.

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Podraza, N.

Pogrebnyakov, A. V.

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Qazilbash, M. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Qiu, M.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Qu, Y.

L. Cai, K. Du, Y. Qu, H. Luo, M. Pan, M. Qiu, and Q. Li, “Nonvolatile tunable silicon-carbide-based midinfrared thermal emitter enabled by phase-changing materials,” Opt. Lett. 43(6), 1295–1298 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Richardson, K. A.

Riverobaleine, C.

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Rusak, E.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

Sautter, J.

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

Shin, B. J.

Sinclair, M. B.

Smith, D. R.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Staude, I.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Subramania, G. S.

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

Sun, C.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Sun, G.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Taubner, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Tian, J.

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

Toh, Y. T.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Tsai, D. P.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Tseng, M. L.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Turpin, J. P.

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Valentine, J. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Wang, B.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Wang, C. M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, H. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, W.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wendt, J. R.

Werner, D. H.

Wright, C. D.

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Wright, J. B.

Wu, H. J.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, P. C.

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wuttig, M.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Xiao, Y. F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Xu, L.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Yang, D.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

J. Tian, Y. Yang, M. Qiu, F. Laurell, V. Pasiskevicius, and H. Jang, “All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region,” Opt. Express 25(20), 24068–24080 (2017).
[Crossref] [PubMed]

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Ye, H.

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Zenin, V. A.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Zhang, G. F.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Zhang, J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Zhao, D.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Zhu, Z.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

ACS Nano (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole Mode in a single germanium nanodisk,” ACS Nano 11(1), 953–960 (2017).
[Crossref] [PubMed]

J. Sautter, I. Staude, M. Decker, E. Rusak, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Active tuning of all-dielectric metasurfaces,” ACS Nano 9(4), 4308–4315 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

Z. Ma, S. M. Hanham, P. Albella, B. Ng, H. T. Lu, Y. Gong, S. A. Maier, and M. Hong, “Terahertz all-dielectric magnetic mirror metasurfaces,” ACS Photonics 3(6), 1010–1018 (2016).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-assisted strong field enhancement in individual all-dielectric nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

ACS Sensors (1)

G. Bakan, S. Ayas, E. Ozgur, K. Celebi, and A. Dana, “Thermally tunable ultrasensitive infrared absorption spectroscopy platforms based on thin phase-change films,” ACS Sensors 1(12), 1403–1407 (2017).
[Crossref]

Adv. Funct. Mater. (1)

C. R. de Galarreta, A. M. Alexeev, Y.-Y. Au, M. Lopez-Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Adv. Mater. (1)

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable dielectric huygens’ metasurfaces,” Adv. Mater. 30(22), 1800278 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Appl. Phys. Lett. (3)

W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, and Q. Li, “Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93(2), 024101 (2008).
[Crossref]

Laser Photonics Rev. (4)

C. H. Chu, M. L. Tseng, J. Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
[Crossref]

J. Tian, H. Luo, Q. Li, X. Pei, K. Du, and M. Qiu, “Near infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures,” Laser Photonics Rev. 12(9), 1800076 (2018).
[Crossref]

Light Sci. Appl. (3)

K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), 161 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 6(7), e17016 (2017).
[Crossref]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref]

Nano Lett. (4)

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

K. E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G. S. Subramania, T. S. Luk, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Polarization-independent silicon metadevices for efficient optical wavefront control,” Nano Lett. 15(8), 5369–5374 (2015).
[Crossref] [PubMed]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nanoscale (2)

J. Tian, Q. Li, Y. Yang, and M. Qiu, “Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna,” Nanoscale 8(7), 4047–4053 (2016).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

R. Paniagua-Domínguez, Y. F. Yu, A. E. Miroshnichenko, L. A. Krivitsky, Y. H. Fu, V. Valuckas, L. Gonzaga, Y. T. Toh, A. Y. Kay, B. Luk’yanchuk, and A. I. Kuznetsov, “Generalized Brewster effect in dielectric metasurfaces,” Nat. Commun. 7, 10362 (2016).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3(1), 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889 (2014).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Science (1)

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347(6228), 1342–1345 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Mid-infrared complex refractive index of the as-deposited amorphous (0%) GST and annealed crystalline (100%) GST [26]. (b) Illustration of switching between an electric dipole and a magnetic dipole scattering behavior through amorphous-crystalline phase transitions in a single GST disk. (c) Calculated scattering cross sections of a single GST disk with d = 1100 nm, h = 400 nm in different phases (X = 0%, 50% and 100%) embedded in a homogeneous medium with n = 1.45. The calculated total scattering cross section (red dashed line) from multipole model is in good accordance with that from FDTD simulation (black solid line). It is decomposed into the contributions from an electric dipole (ED, green solid line), a magnetic dipole (MD, blue solid line), an electric quadrupole (EQ, cyan solid line) and magnetic quadrupole (MQ, magenta solid line). The arrows denote switching between an electric dipole response and a magnetic dipole response at different wavelengths through 50% phase transition.
Fig. 2
Fig. 2 (a) Schematic of a switchable antenna-based GST metasurface located on a glass substrate, with h = 400 nm. The overall system is under plane wave illumination propagating in z direction with y-polarized electric field. Calculated transmission (b), (d), (f) and reflection (c), (e), (g) spectra of the GST metasurface with g = 500 nm in different phases (X = 0%, 50% and 100%). The white dashed lines highlight the spectral positions of induced electric (ED) and magnetic dipole (MD) resonances inside each element as a function of the disk size. For d = 1300 nm, the GST metasurface gives an electric dipole response denoted as Mode I (Mode II) when X = 0% (X = 50%) and turns into a magnetic dipole response denoted as Mode I′ (Mode II′) when X = 50% (X = 100%) at the wavelength of 3.6 μm (4.1 μm). Also, when d = 1700 nm, the metasurface can switch between the electric dipole response (Mode III) and magnetic dipole response (Mode III′) through 100% phase transition near the wavelength of 4.3 μm.
Fig. 3
Fig. 3 (a) Field distribution inside each GST disk in the yz-plane. The color denotes the field intensity and the white arrows represent the electric field vectors. (b) Calculated transmission switching contrast of the metasurface with g = 500 nm and h = 400 nm between X = 50% and X = 0%. The scale bar is in log scale. (c) The transmission data of the GST metasurface with g = 500 nm, h = 400 nm, and d = 2120 nm for X = 50% and X = 0%. The transmission contrast between X = 0% and X = 50% is as high as 30 dB at the wavelength of 4.1 μm as denoted in (b). (d) 2π phase shift in transmission originating from amorphous-crystalline phase transition while maintaining T ~50% for d = 920 nm at the wavelength of 2.9 μm, denoted by the black arrow in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε X 1 ε X +2 =X ε c 1 ε c +2 +(1X) ε a 1 ε a +2