Abstract

Change in directional (biconical) spectral reflectance was monitored for three soil samples under air dry and saturated conditions in the laboratory. The illumination angle was set consecutively at θi  = −10°, −40°, and −70° (left side of the sample on the principal plane), while the observation angle ranged from θo  = −60° to + 60° (both sides of the sample in the principal plane) in 5° increments. The soil samples were chosen to represent a variety of soil properties. Emphasis is on observations that illustrate the changes in the directional and spectral distribution of soil reflectance when the soil is dry or saturated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

5 September 2018: A typographical correction was made to title.


OSA Recommended Articles
Influence of solar illumination angle on soybean canopy reflectance

J. C. Kollenkark, V. C. Vanderbilt, C. S. T. Daughtry, and M. E. Bauer
Appl. Opt. 21(7) 1179-1184 (1982)

Effects of particle size on bidirectional reflectance factor measurements from particulate surfaces

Zhongqiu Sun, Yunfeng Lv, and Zhijun Tong
Opt. Express 24(6) A612-A634 (2016)

Mid-infrared laser reflectance of moist soils

Ram M. Narayanan, Steven E. Green, and Dennis R. Alexander
Appl. Opt. 32(30) 6043-6052 (1993)

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).
  2. A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
    [Crossref]
  3. S. Liang, “An investigation of remotely-sensed soil depth in the optical region,” Int. J. Remote Sens. 18(16), 3395–3408 (1997).
    [Crossref]
  4. M. Tester and C. A. Morris, “The penetration of light through soil,” Plant Cell Environ. 10(4), 281–286 (1987).
    [Crossref]
  5. H. Zhang, K. Voss, and R. Reid, “Determining the influential depth for surface reflectance of sediment by BRDF measurements,” Opt. Express 11(21), 2654–2665 (2003).
    [Crossref] [PubMed]
  6. D. J. Leu, “Visible and near — infrared reflectance of beach sands: a study on the spectral reflectance/ grain size relationship,” Remote Sens. Environ. 6(3), 169–182 (1977).
    [Crossref]
  7. D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Sci. Soc. Am. J. 66(3), 722–727 (2002).
    [Crossref]
  8. C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
    [Crossref] [PubMed]
  9. M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
    [Crossref]
  10. S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
    [Crossref]
  11. J. Tian and W. D. Philpot, “Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra,” Remote Sens. Environ. 169, 280–289 (2015).
    [Crossref]
  12. S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
    [Crossref]
  13. J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
    [Crossref]
  14. P. Helfenstein and M. K. Shepard, “Testing the Hapke photometric model: Improved inversion and the porosity correction,” Icarus 215(1), 83–100 (2011).
    [Crossref]
  15. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
    [Crossref]
  16. C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
    [Crossref]
  17. B. W. Hapke, Theory Of Reflectance And Emittance Spectroscopy, II, Cambridge: Cambridge University 9780521883 (2012).
  18. D. S. Peck, M. J. Schultz, C. M. Bachmann, B. Ambeau, and J. Hamrs, “Influence of density on hyperspectral BRDF siganaures of granular materials,” in Proc. SPIE 9472: Algorithms and Technologies for Multispetral, Hyperspectral and Ultraspectral Imagery XXI (2015).
  19. I. G. E. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express, 16, 17, 12892 (2008).
  20. J. Cierniewski and M. Gulinski, “Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions,” IEEE Trans. Geosci. Remote Sens. 48(11), 4143–4148 (2010).
  21. H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
    [Crossref]
  22. C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
    [Crossref]
  23. Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
    [Crossref]
  24. A. Karnieli and J. Cierniewski, “Inferring the roughness of desert rocky surfaces from their bidirectional reflectance data,” Adv. Space Res. 28(1), 171–176 (2001).
    [Crossref]
  25. G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
    [Crossref]
  26. H. Zhang and K. J. Voss, “Bidirectional reflectance study on dry, wet, and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations,” Appl. Opt. 45(34), 8753–8763 (2006).
    [Crossref] [PubMed]
  27. Labsphere, “Technical guide: reflectance materials and coatings,” North Sutton, NH, 2017.
  28. B. W. Hapke, Theory Of Reflectance And Emittance Spectroscopy, II. Cambridge, England: Cambridge University(2012).
  29. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering Of Light By Particles: Radiative Transfer And Coherent Backscattering, I. Cambridge, U.K.: Cambridge University (2006).
  30. B. W. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” J. Geophys. Res. - Solid Earth 86(NB4), 3039–3054 (1981).
  31. M. Shoshany, “Roughness—Reflectance relationship of bare desert terrain: An empirical study,” Remote Sens. Environ. 45(1), 15–27 (1993).
    [Crossref]
  32. H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17(7), 5217–5231 (2009).
    [Crossref] [PubMed]
  33. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  34. A. Ångström, “The Albedo of Various Surfaces of Ground,” Geogr. Ann.,  7(1925), 323–342 (1925).
  35. J. Lekner and M. C. Dorf, “Why some things are darker when wet,” Appl. Opt. 27(7), 1278–1280 (1988).
    [Crossref] [PubMed]
  36. W. D. Philpot and J. Tian, “The hyperspectral soil line: a preliminary description,” in Hyperspectral Imaging and Sounding of the Environment (HISE), 2016, Part F22-H.
  37. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [Crossref] [PubMed]

2015 (2)

M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
[Crossref]

J. Tian and W. D. Philpot, “Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra,” Remote Sens. Environ. 169, 280–289 (2015).
[Crossref]

2014 (2)

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

2012 (1)

H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
[Crossref]

2011 (2)

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

P. Helfenstein and M. K. Shepard, “Testing the Hapke photometric model: Improved inversion and the porosity correction,” Icarus 215(1), 83–100 (2011).
[Crossref]

2010 (2)

J. Cierniewski and M. Gulinski, “Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions,” IEEE Trans. Geosci. Remote Sens. 48(11), 4143–4148 (2010).

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

2009 (2)

H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17(7), 5217–5231 (2009).
[Crossref] [PubMed]

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

2008 (1)

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

2007 (2)

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
[Crossref] [PubMed]

2006 (2)

H. Zhang and K. J. Voss, “Bidirectional reflectance study on dry, wet, and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations,” Appl. Opt. 45(34), 8753–8763 (2006).
[Crossref] [PubMed]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

2005 (1)

A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
[Crossref]

2003 (2)

H. Zhang, K. Voss, and R. Reid, “Determining the influential depth for surface reflectance of sediment by BRDF measurements,” Opt. Express 11(21), 2654–2665 (2003).
[Crossref] [PubMed]

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

2002 (1)

D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Sci. Soc. Am. J. 66(3), 722–727 (2002).
[Crossref]

2001 (1)

A. Karnieli and J. Cierniewski, “Inferring the roughness of desert rocky surfaces from their bidirectional reflectance data,” Adv. Space Res. 28(1), 171–176 (2001).
[Crossref]

1999 (1)

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

1997 (2)

S. Liang, “An investigation of remotely-sensed soil depth in the optical region,” Int. J. Remote Sens. 18(16), 3395–3408 (1997).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
[Crossref] [PubMed]

1993 (1)

M. Shoshany, “Roughness—Reflectance relationship of bare desert terrain: An empirical study,” Remote Sens. Environ. 45(1), 15–27 (1993).
[Crossref]

1988 (1)

1987 (1)

M. Tester and C. A. Morris, “The penetration of light through soil,” Plant Cell Environ. 10(4), 281–286 (1987).
[Crossref]

1981 (1)

B. W. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” J. Geophys. Res. - Solid Earth 86(NB4), 3039–3054 (1981).

1977 (1)

D. J. Leu, “Visible and near — infrared reflectance of beach sands: a study on the spectral reflectance/ grain size relationship,” Remote Sens. Environ. 6(3), 169–182 (1977).
[Crossref]

1925 (1)

A. Ångström, “The Albedo of Various Surfaces of Ground,” Geogr. Ann.,  7(1925), 323–342 (1925).

Abelev, A.

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

Anderson, K.

H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
[Crossref]

Ångström, A.

A. Ångström, “The Albedo of Various Surfaces of Ground,” Geogr. Ann.,  7(1925), 323–342 (1925).

Arnold, G. T.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Asner, G. P.

D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Sci. Soc. Am. J. 66(3), 722–727 (2002).
[Crossref]

Bachmann, C. M.

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

Bartholomeus, H.

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Bertuzzi, P.

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Calvet, J.-C.

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Campos, R. C.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

Chabrillat, S.

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

Chanzy, A.

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Chappell, A.

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

Ciani, A.

A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
[Crossref]

Cierniewski, J.

J. Cierniewski and M. Gulinski, “Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions,” IEEE Trans. Geosci. Remote Sens. 48(11), 4143–4148 (2010).

A. Karnieli and J. Cierniewski, “Inferring the roughness of desert rocky surfaces from their bidirectional reflectance data,” Adv. Space Res. 28(1), 171–176 (2001).
[Crossref]

Croft, H.

H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
[Crossref]

da Silva, A. P.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

De, M. F.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

Demattê, J. A. M.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

Dorf, M. C.

Dos Santos, W. C.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

Fry, E. S.

Gatebe, C. K.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Gong, P.

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

Goss, K.-U.

A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
[Crossref]

Gulinski, M.

J. Cierniewski and M. Gulinski, “Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions,” IEEE Trans. Geosci. Remote Sens. 48(11), 4143–4148 (2010).

Hapke, B. W.

B. W. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” J. Geophys. Res. - Solid Earth 86(NB4), 3039–3054 (1981).

Haubrock, S.

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

Helfenstein, P.

P. Helfenstein and M. K. Shepard, “Testing the Hapke photometric model: Improved inversion and the porosity correction,” Icarus 215(1), 83–100 (2011).
[Crossref]

Huang, W.-J.

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

Jonasz, M.

Jones, S. B.

M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
[Crossref]

Karnieli, A.

A. Karnieli and J. Cierniewski, “Inferring the roughness of desert rocky surfaces from their bidirectional reflectance data,” Adv. Space Res. 28(1), 171–176 (2001).
[Crossref]

Kaufmann, H.

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

Khannaa, S.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

King, M. D.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Kitamura, R.

Korwan, D. R.

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

Kuhn, N. J.

H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
[Crossref]

Lekner, J.

Lemmnitz, C.

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

Leu, D. J.

D. J. Leu, “Visible and near — infrared reflectance of beach sands: a study on the spectral reflectance/ grain size relationship,” Remote Sens. Environ. 6(3), 169–182 (1977).
[Crossref]

Liang, S.

S. Liang, “An investigation of remotely-sensed soil depth in the optical region,” Int. J. Remote Sens. 18(16), 3395–3408 (1997).
[Crossref]

Litago, J.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

Liu, Q.

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

Lobell, D. B.

D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Sci. Soc. Am. J. 66(3), 722–727 (2002).
[Crossref]

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Morris, C. A.

M. Tester and C. A. Morris, “The penetration of light through soil,” Plant Cell Environ. 10(4), 281–286 (1987).
[Crossref]

Nanni, M. R.

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

No, D.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

Nolet, C.

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Olioso, A.

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Palacios-Orueta, A.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

Philpot, W. D.

M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
[Crossref]

J. Tian and W. D. Philpot, “Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra,” Remote Sens. Environ. 169, 280–289 (2015).
[Crossref]

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

Pilon, L.

Platnick, S.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Poortinga, A.

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Pope, R. M.

Reid, R.

Roosjen, P.

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Ruessink, G.

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Sadeghi, M.

M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
[Crossref]

Schaepman, M. E.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schmid, B.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Schwarzenbach, R. P.

A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
[Crossref]

Shepard, M. K.

P. Helfenstein and M. K. Shepard, “Testing the Hapke photometric model: Improved inversion and the porosity correction,” Icarus 215(1), 83–100 (2011).
[Crossref]

Shoshany, M.

M. Shoshany, “Roughness—Reflectance relationship of bare desert terrain: An empirical study,” Remote Sens. Environ. 45(1), 15–27 (1993).
[Crossref]

Tester, M.

M. Tester and C. A. Morris, “The penetration of light through soil,” Plant Cell Environ. 10(4), 281–286 (1987).
[Crossref]

Tian, J.

J. Tian and W. D. Philpot, “Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra,” Remote Sens. Environ. 169, 280–289 (2015).
[Crossref]

Ustin, S. L.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

Vermote, E. F.

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

Voss, K.

Voss, K. J.

Wang, J.-H.

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

Whiting, M. L.

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

Wigneron, J.-P.

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Wu, Y.

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

Yang, G.-J.

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

Zhang, H.

Zhao, C.-J.

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

Adv. Space Res. (1)

A. Karnieli and J. Cierniewski, “Inferring the roughness of desert rocky surfaces from their bidirectional reflectance data,” Adv. Space Res. 28(1), 171–176 (2001).
[Crossref]

Appl. Opt. (4)

Catena (1)

H. Croft, K. Anderson, and N. J. Kuhn, “Reflectance anisotropy for measuring soil surface roughness of multiple soil types,” Catena 93, 87–96 (2012).
[Crossref]

Eur. J. Soil Sci. (1)

A. Ciani, K.-U. Goss, and R. P. Schwarzenbach, “Light penetration in soil and particulate minerals,” Eur. J. Soil Sci. 56(5), 561–574 (2005).
[Crossref]

Geogr. Ann. (1)

A. Ångström, “The Albedo of Various Surfaces of Ground,” Geogr. Ann.,  7(1925), 323–342 (1925).

Hydrol. Earth Syst. Sci. (1)

G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the Hapke bidirectional reflectance model to retrieve soil water content,” Hydrol. Earth Syst. Sci. 15(7), 2317–2326 (2011).
[Crossref]

Icarus (1)

P. Helfenstein and M. K. Shepard, “Testing the Hapke photometric model: Improved inversion and the porosity correction,” Icarus 215(1), 83–100 (2011).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

J. Cierniewski and M. Gulinski, “Furrow microrelief influence on the directional hyperspectral reflectance of soil at various illumination and observation conditions,” IEEE Trans. Geosci. Remote Sens. 48(11), 4143–4148 (2010).

Int. J. Remote Sens. (3)

S. Haubrock, S. Chabrillat, C. Lemmnitz, and H. Kaufmann, “Surface soil moisture quantification models from reflectance data under field conditions,” Int. J. Remote Sens. 29(1), 3–29 (2008).
[Crossref]

J. A. M. Demattê, M. R. Nanni, A. P. da Silva, M. F. De, W. C. Dos Santos, and R. C. Campos, “Soil density evaluated by spectral reflectance as an evidence of compaction effects,” Int. J. Remote Sens. 31(2), 403–422 (2010).
[Crossref]

S. Liang, “An investigation of remotely-sensed soil depth in the optical region,” Int. J. Remote Sens. 18(16), 3395–3408 (1997).
[Crossref]

J. Geophys. Res. (1)

C. K. Gatebe, M. D. King, S. Platnick, G. T. Arnold, E. F. Vermote, and B. Schmid, “Airborne spectral measurements of surface–atmosphere anisotropy for several surfaces and ecosystems over southern Africa,” J. Geophys. Res. 108(D13), 8489 (2003).
[Crossref]

J. Geophys. Res. - Solid Earth (1)

B. W. Hapke, “Bidirectional reflectance spectroscopy: 1. Theory,” J. Geophys. Res. - Solid Earth 86(NB4), 3039–3054 (1981).

Opt. Express (2)

Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. (1)

J.-P. Wigneron, J.-C. Calvet, A. Olioso, A. Chanzy, and P. Bertuzzi, “Estimating the root-zone soil moisture from the combined use of time series of surface soil moisture and SVAT modelling,” Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos. 24(7), 837–843 (1999).

Plant Cell Environ. (1)

M. Tester and C. A. Morris, “The penetration of light through soil,” Plant Cell Environ. 10(4), 281–286 (1987).
[Crossref]

PLoS One (1)

C. Nolet, A. Poortinga, P. Roosjen, H. Bartholomeus, and G. Ruessink, “Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand,” PLoS One 9(11), e112151 (2014).
[Crossref] [PubMed]

Remote Sens. Environ. (8)

M. Sadeghi, S. B. Jones, and W. D. Philpot, “A linear physically-based model for remote sensing of soil moisture using short wave infrared bands,” Remote Sens. Environ. 164, 66–76 (2015).
[Crossref]

S. Khannaa, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. No, and J. Litago, “Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination,” Remote Sens. Environ. 109(2), 154–165 (2007).
[Crossref]

J. Tian and W. D. Philpot, “Relationship between surface soil water content, evaporation rate, and water absorption band depths in SWIR reflectance spectra,” Remote Sens. Environ. 169, 280–289 (2015).
[Crossref]

D. J. Leu, “Visible and near — infrared reflectance of beach sands: a study on the spectral reflectance/ grain size relationship,” Remote Sens. Environ. 6(3), 169–182 (1977).
[Crossref]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

C. M. Bachmann, W. D. Philpot, A. Abelev, and D. R. Korwan, “Phase angle dependence of sand density observable in hyperspectral reflectance,” Remote Sens. Environ. 150, 53–65 (2014).
[Crossref]

M. Shoshany, “Roughness—Reflectance relationship of bare desert terrain: An empirical study,” Remote Sens. Environ. 45(1), 15–27 (1993).
[Crossref]

Y. Wu, P. Gong, Q. Liu, and A. Chappell, “Retrieving photometric properties of desert surfaces in China using the Hapke model and MISR data,” Remote Sens. Environ. 113(1), 213–223 (2009).
[Crossref]

Soil Sci. Soc. Am. J. (1)

D. B. Lobell and G. P. Asner, “Moisture effects on soil reflectance,” Soil Sci. Soc. Am. J. 66(3), 722–727 (2002).
[Crossref]

Other (7)

B. W. Hapke, Theory Of Reflectance And Emittance Spectroscopy, II, Cambridge: Cambridge University 9780521883 (2012).

D. S. Peck, M. J. Schultz, C. M. Bachmann, B. Ambeau, and J. Hamrs, “Influence of density on hyperspectral BRDF siganaures of granular materials,” in Proc. SPIE 9472: Algorithms and Technologies for Multispetral, Hyperspectral and Ultraspectral Imagery XXI (2015).

I. G. E. Renhorn and G. D. Boreman, “Analytical fitting model for rough-surface BRDF,” Opt. Express, 16, 17, 12892 (2008).

Labsphere, “Technical guide: reflectance materials and coatings,” North Sutton, NH, 2017.

B. W. Hapke, Theory Of Reflectance And Emittance Spectroscopy, II. Cambridge, England: Cambridge University(2012).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering Of Light By Particles: Radiative Transfer And Coherent Backscattering, I. Cambridge, U.K.: Cambridge University (2006).

W. D. Philpot and J. Tian, “The hyperspectral soil line: a preliminary description,” in Hyperspectral Imaging and Sounding of the Environment (HISE), 2016, Part F22-H.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Soil samples for a) quartz sand, b) masonry sand, c) Ithaca soil, all at the same scale.
Fig. 2
Fig. 2 Experimental setup sketch.
Fig. 3
Fig. 3 Nadir reflectance of three soil samples, a) Quartz sand, b) Masonry sand, and c) Ithaca soil, at dry and saturated conditions with illumination angle at −10°, −40°, and −70°, respectively.
Fig. 4
Fig. 4 Quartz sand directional reflectance with θ o = 60 °   to + 60 ° at 650 nm, 1000 nm, 1440 nm, and 1680 nm, when θ i = 10 ° ,   40 ° , and 70 ° . The left column is for the dry quartz sand sample, and the right column is for the saturated quartz sand sample.
Fig. 5
Fig. 5 Masonry sand directional reflectance with θ o = 60 °   to + 60 ° at 650 nm, 1000 nm, 1440 nm, and 1680 nm, when θ i = 10 ° ,   40 ° , and 70 ° . The left column is for the dry masonry sand sample, and the right column is for the saturated masonry sand sample.
Fig. 6
Fig. 6 Ithaca soil directional reflectance with θ o = 60 °   to + 60 ° at 650 nm, 1000 nm, 1440 nm, and 1680 nm, when θ i = 10 ° ,   40 ° , and 70 ° . The left column is for the dry Ithaca soil sample, and the right column is for the saturated Ithaca soil sample.
Fig. 7
Fig. 7 Quartz sand under (a) air-dry, and (b) saturated conditions. Both images were collected under identical lighting using Canon Powershot ELPH 340 HS with identical settings (f/4.5, exposure 1/50 sec.). The width of the red box denotes 1 mm.
Fig. 8
Fig. 8 Histograms of the Fig. 7 images for quartz sand when air-dry and saturated.
Fig. 9
Fig. 9 Characterization of reflectance from dry soil (a), and wet soil (b).
Fig. 10
Fig. 10 Spectral reflectance, normalized at 900 nm, from the quartz sand and Ithaca soil samples, for the full range of illumination and viewing angles. Orange curves represent the dry samples, blue curves represent the wet samples. Thin, black lines in the legend indicate missing data where the incidence and observation angles coincide.

Tables (1)

Tables Icon

Table 1 Soil sample properties

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R s t d ( θ i ,   0 ) = L s t d ( θ i ,   0 ) L s t d ( 8 ° ,   0 ) cos 8 ° cos θ i φ R s t d ( 8 ° ,   0 )       ,
R s m p ( θ i ,   θ o ) = L s m p ( θ i ,   θ o ) L s t d ( θ i ,   θ o ) R s t d ( θ i ,   0 )       ,

Metrics