Abstract

We demonstrated a two-dimensional vector-bending sensor by use of fiber Bragg gratings (FBGs) inscribed in a homogeneous seven-core fiber. Seven FBGs were simultaneously inscribed in each of all seven cores using a modified Talbot interferometer and a lens scanning method. The vector bending response of six outer-core FBGs was investigated at all 360° directions with a step size of 15°. The bending sensitivities of the six outer-core FBGs display six perfect '8'-shaped patterns in a polar-coordinate system. That is, they exhibit strong bending-direction dependence with a maximum sensitivity of 59.47 pm/m−1. The orientation and amplitude of the vector bending can be reconstructed using measured Bragg wavelength shifts of any two off-diagonal outer-core FBGs. So, the six outer-core FBGs have 12 combinations for bend reconstruction, which can be averaged across multiple reconstructions to develop an accurate two-dimensional vector bending sensor. The average relative error was lower than 4.5% for reconstructed amplitude and less than 2.8% for reconstructed orientation angle θ. Moreover, the seven-core FBGs offer several advantages such as a compact structure, fabrication flexibility, and the temperature compensating ability of central-core FBG.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber

Jingxian Cui, Zhengyong Liu, Dinusha Serandi Gunawardena, Zhiyong Zhao, and Hwa-Yaw Tam
Opt. Express 27(15) 20848-20856 (2019)

Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei
Opt. Express 21(20) 23812-23821 (2013)

Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses

Alexey Wolf, Alexandr Dostovalov, Kirill Bronnikov, and Sergey Babin
Opt. Express 27(10) 13978-13990 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [Crossref] [PubMed]
  2. L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
    [Crossref] [PubMed]
  3. D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41(6), 1201–1204 (2016).
    [Crossref] [PubMed]
  4. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
    [Crossref]
  5. W. Bao, Q. Rong, F. Chen, and X. Qiao, “All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG,” Opt. Express 26(7), 8619–8627 (2018).
    [Crossref] [PubMed]
  6. L. Y. Shao, L. Y. Xiong, C. K. Chen, A. Laronche, and J. Albert, “Directional bend sensor based on re-grown tilted fiber Bragg grating,” J. Lightwave Technol. 28(18), 2681–2687 (2010).
    [Crossref]
  7. B. Jiang, Z. Bai, C. Wang, Y. Zhao, J. Zhao, L. Zhang, and K. Zhou, “In-line Mach-Zehnder interferometer with D-shaped fiber grating for temperature-discriminated directional curvature measurement,” J. Lightwave Technol. 36(3), 742–747 (2018).
    [Crossref]
  8. L. Jin, W. Jin, and J. Ju, “Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber,” J. Lightwave Technol. 27(21), 4884–4891 (2009).
    [Crossref]
  9. X. Zhong, C. Guan, G. Mao, J. Fu, Y. Liu, J. Shi, and L. Yuan, “Bending characteristics of a long-period fiber grating in a hollow eccentric optical fiber,” Appl. Opt. 54(26), 7879–7883 (2015).
    [Crossref] [PubMed]
  10. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  11. Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
    [Crossref]
  12. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
    [Crossref] [PubMed]
  13. D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3d shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5(1), 17415 (2015).
    [Crossref] [PubMed]
  14. J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
    [Crossref]
  15. H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).
  16. F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
    [Crossref] [PubMed]
  17. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354 (2013).
  18. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  19. A. Donko, M. Beresna, Y. Jung, J. Hayes, D. J. Richardson, and G. Brambilla, “Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber,” Opt. Express 26(2), 2039–2044 (2018).
    [Crossref] [PubMed]
  20. H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
    [Crossref]
  21. G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
    [Crossref] [PubMed]
  22. K. Yang, J. He, C. Liao, Y. Wang, S. Liu, K. Guo, J. Zhou, Z. Li, Z. Tan, and Y. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
    [Crossref]
  23. S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, Y. Zhang, T. Yan, L. Yu, W. Hu, and Y. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
    [Crossref] [PubMed]
  24. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  25. D. Zheng, J. Madrigal, H. Chen, D. Barrera, and S. Sales, “Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum,” Opt. Lett. 42(18), 3710–3713 (2017).
    [Crossref] [PubMed]
  26. D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42(7), 1460–1463 (2017).
    [Crossref] [PubMed]
  27. D. Barrera, J. Madrigal, and S. Sales, “Long period gratings in multicore optical fibers for directional curvature sensor implementation,” J. Lightwave Technol. 36(4), 1063–1068 (2018).
    [Crossref]
  28. Y. Wang, J. Grant, A. Sharma, and G. Myers, “Modified Talbot interferometer for fabrication of fiber-optic grating filter over a wide range of Bragg wavelength and bandwidth using a single phase mask,” J. Lightwave Technol. 35(21), 4670–4676 (2001).
  29. E. Lindley, S. S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22(25), 31575–31581 (2014).
    [Crossref] [PubMed]
  30. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
    [Crossref] [PubMed]
  31. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
    [Crossref] [PubMed]

2018 (4)

2017 (7)

D. Zheng, J. Madrigal, H. Chen, D. Barrera, and S. Sales, “Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum,” Opt. Lett. 42(18), 3710–3713 (2017).
[Crossref] [PubMed]

D. Barrera, J. Madrigal, and S. Sales, “Tilted fiber Bragg gratings in multicore optical fibers for optical sensing,” Opt. Lett. 42(7), 1460–1463 (2017).
[Crossref] [PubMed]

G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
[Crossref] [PubMed]

K. Yang, J. He, C. Liao, Y. Wang, S. Liu, K. Guo, J. Zhou, Z. Li, Z. Tan, and Y. Wang, “Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing,” J. Lightwave Technol. 35(21), 4670–4676 (2017).
[Crossref]

S. Wang, W. Zhang, L. Chen, Y. Zhang, P. Geng, Y. Zhang, T. Yan, L. Yu, W. Hu, and Y. Li, “Two-dimensional microbend sensor based on long-period fiber gratings in an isosceles triangle arrangement three-core fiber,” Opt. Lett. 42(23), 4938–4941 (2017).
[Crossref] [PubMed]

F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8(4), 2210–2221 (2017).
[Crossref] [PubMed]

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
[Crossref] [PubMed]

2016 (5)

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41(6), 1201–1204 (2016).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
[Crossref] [PubMed]

2015 (2)

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3d shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

X. Zhong, C. Guan, G. Mao, J. Fu, Y. Liu, J. Shi, and L. Yuan, “Bending characteristics of a long-period fiber grating in a hollow eccentric optical fiber,” Appl. Opt. 54(26), 7879–7883 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (2)

2010 (3)

2009 (1)

2007 (1)

2005 (1)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

2003 (1)

2001 (1)

Albert, J.

Bai, Z.

Baiad, M. D.

Bao, W.

Barrera, D.

Barton, J. S.

Bennion, I.

Beresna, M.

Bland-Hawthorn, J.

Boisvert, J. S.

Brambilla, G.

Chen, C. K.

Chen, F.

Chen, H.

Chen, L.

Chen, W.

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Chen, X.

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Cheng, C.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Cvetojevic, N.

Dimarcello, F. V.

Dinh, X. Q.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Donko, A.

Du, C.

Ellis, S.

Feng, D.

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41(6), 1201–1204 (2016).
[Crossref] [PubMed]

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3d shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Fini, J. M.

Fishteyn, M.

Flockhart, G. M. H.

Fok, M. P.

Fu, J.

Fu, S.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Gao, S.

Ge, J.

Geng, P.

Grant, J.

Guan, C.

Guo, K.

Hayes, J.

He, J.

Hu, W.

Huang, Q.

Iezzi, V. L.

Jiang, B.

Jin, L.

Jin, W.

Jones, J. D. C.

Ju, J.

Jung, Y.

Kadoury, S.

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Kashyap, R.

Kong, J.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Lai, Y.

Lapointe, J.

Laronche, A.

Lawrence, J.

Leon-Saval, S.

Li, J.

Li, Y.

Li, Z.

Liang, X.

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Liao, C.

Lindley, E.

Liu, S.

Liu, Y.

Loranger, S.

MacPherson, W. N.

Madrigal, J.

Mandal, K. K.

Mao, G.

Min, S. S.

Monberg, E. M.

Myers, G.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354 (2013).

Ou, Z.

Parent, F.

Patel, J. H.

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Pfeifer, R.

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Qiao, X.

Rao, Y. J.

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Richardson, D. J.

Rong, Q.

Sales, S.

Shao, L. Y.

Sharma, A.

Shi, J.

Shum, P. P.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Soto, M. A.

Sugden, K.

Tan, Z.

Tang, M.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
[Crossref] [PubMed]

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Taunay, T. F.

Thévenaz, L.

Tong, W.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Wang, C.

Wang, H.

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Wang, J.

Wang, L.

Wang, R.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Wang, S.

Wang, Y.

Wang, Y. P.

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Wei, H.

Wu, Z.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Xiong, L. Y.

Xu, L.

Xue, X.

Yan, M. F.

Yan, P.

Yan, T.

Yang, J.

G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
[Crossref] [PubMed]

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Yang, K.

Yu, L.

Yu, Y.

Yuan, L.

Yuan, T.

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Zhang, H.

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Zhang, L.

Zhang, R.

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

Zhang, S.

Zhang, W.

Zhang, Y.

Zhao, J.

Zhao, Y.

Zhao, Z.

Zheng, D.

Zhong, X.

Zhou, A.

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

Zhou, J.

Zhou, K.

Zhou, W.

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3d shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Zhu, B.

Zhu, Z.

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (2)

J. Kong, A. Zhou, C. Cheng, J. Yang, and L. Yuan, “Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings,” IEEE Photonics Technol. Lett. 28(11), 1237–1240 (2016).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

IEEE Sens. J. (1)

Y. P. Wang and Y. J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005).
[Crossref]

IEEE/ASME T. Mech. (1)

H. Wang, R. Zhang, W. Chen, and X. Liang, X., andR. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings”, IEEE/ASME T. Mech. 21(6), 2977–2982 (2016).

J. Lightwave Technol. (6)

J. Opt. (1)

H. Zhang, Z. Wu, P. P. Shum, R. Wang, X. Q. Dinh, S. Fu, W. Tong, and M. Tang, “Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing,” J. Opt. 18(8), 085705 (2016).
[Crossref]

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354 (2013).

Opt. Express (10)

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[Crossref] [PubMed]

P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

E. Lindley, S. S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22(25), 31575–31581 (2014).
[Crossref] [PubMed]

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25223 (2016).
[Crossref] [PubMed]

G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
[Crossref] [PubMed]

W. Bao, Q. Rong, F. Chen, and X. Qiao, “All-fiber 3D vector displacement (bending) sensor based on an eccentric FBG,” Opt. Express 26(7), 8619–8627 (2018).
[Crossref] [PubMed]

Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of first-order fiber Bragg grating for C-band applications,” Opt. Express 15(26), 18318–18325 (2007).
[Crossref] [PubMed]

L. Xu, J. Ge, J. H. Patel, and M. P. Fok, “Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing,” Opt. Express 25(20), 24727–24734 (2017).
[Crossref] [PubMed]

A. Donko, M. Beresna, Y. Jung, J. Hayes, D. J. Richardson, and G. Brambilla, “Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber,” Opt. Express 26(2), 2039–2044 (2018).
[Crossref] [PubMed]

Opt. Lett. (6)

Sci. Rep. (1)

D. Feng, W. Zhou, X. Qiao, and J. Albert, “Compact optical fiber 3d shape sensor based on a pair of orthogonal tilted fiber Bragg gratings,” Sci. Rep. 5(1), 17415 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic diagram of the seven-core FBG inscription process using a scanning UV laser. (a) Microscopic image of the cross-section of the seven-core fiber. (b) A schematic of the seven-core FBGs inscription using a modified Talbot interferometer with a perpendicular scanning cylindrical lens. (c) The experimental setup.
Fig. 2
Fig. 2 Transmission spectra (a) and reflection spectra (b) of the FBGs inscribed in a seven-core fiber.
Fig. 3
Fig. 3 Schematic images of directional bend measurements for the seven-core FBGs. (a) The experimental setup. (b) and (c): The bend orientation (θ) with respect to seven-core FBGs coinciding with the core1 and core4 axes. Core1 was located on the outer side of the bent MCF.
Fig. 4
Fig. 4 Measured Bragg wavelength shifts plotted against curvature for different orientations: (a) FBG1 and (b) FBG4. Also shown are measured Bragg wavelength shifts for (c) FBG1 and (d) FBG4, plotted as a function of the bend direction angle θ.
Fig. 5
Fig. 5 Bend sensitivities for two FBGs in the seven-core FBGs (i.e. FBG1 and FBG4) plotted for various bend directions (from 0° to 360°).
Fig. 6
Fig. 6 Bend sensitivities for the six outer-core FBGs in the seven-core FBGs (i.e., core1, core2, core3, core4, core5 and core6) plotted for various bend directions (from 0° to 360°).
Fig. 7
Fig. 7 A schematics diagram of the bending vector R in different quadrants and decomposed into three components along three diagonal lines: (a) quadrant I, (b) quadrant II, (c) quadrant III, and (d) quadrant V.

Tables (2)

Tables Icon

Table 1 The results of curvature (6.095 m−1, 30°) reconstructed for 12 different combinations.

Tables Icon

Table 2 The curvature reconstruction results for bending vectors in 4 different quadrants.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ laser 2 sin ( α + 2 φ ) ,
r n = Δ λ n K n ,
| R | = { | r 1 | 2 + y 1 2 | r 1 | 2 + y 2 2 | r 2 | 2 + y 3 2 .
y 1 = 2 3 r 2 3 3 r 1 3 ,
y 2 = 2 3 r 3 3 + 3 r 1 3 ,
y 3 = 3 r 2 3 2 3 r 3 3 ,
θ = { arc tan ( | y 1 r 1 | ) , arc tan ( | y 2 r 1 | ) , arc tan ( | r 2 y 3 | ) π 6 , (0~ π 3 ) 5 π 6 arc tan ( | r 2 y 3 | ) , ( π 3 ~ π 2 )

Metrics