Abstract

Fresnel lenses are fabricated directly upon the end face of gradient index (GRIN) lenses by F2-laser machining at 157 nm wavelength. The employed laser processing technique combines a mask projection configuration at 25-x demagnification with a rotation of the structured lens. The ablation characteristics of the GRIN materials require very high pulse fluences with typical values above 7 J/cm2. Topography measurements on the Fresnel lenses reveal a good contour accuracy with residual deviations from the design profile well below 100 nm. Such hybrid optical elements, combining GRIN lenses with diffractive lenses in one element, can serve as the basis for high-performance micro-optical imaging systems with diameters up to 2 mm. Examples of possible applications include imaging sensors like proximity sensors or color-corrected microscope objectives with high numerical aperture for endoscopy applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gradient-index planar optics for optical interconnections

Seok Ho Song, Suntak Park, Cha Hwan Oh, Pill Soo Kim, Mu Hee Cho, and Yeong Sik Kim
Opt. Lett. 23(13) 1025-1027 (1998)

Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems

Ahmad Rosli Abdul Manaf, Tsunetoshi Sugiyama, and Jiwang Yan
Opt. Express 25(2) 1202-1220 (2017)

Micro gradient-index conical lenses: simulation and fabrication methods

Deqiang Song, Michael Sanchez, Matthias Gross, and Sadik Esener
Appl. Opt. 44(18) 3747-3751 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D.T. Moore, Selected Papers on Gradient-index Optics. SPIE-Milestone Series, vol. MS 67 (SPIE, 1993).
  2. B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).
  3. T. Fricke-Begemann, J. Meinertz, and J. Ihlemann, “Fabrication of diffractive micro lenses by direct laser ablation,” in Proceedings of the EOS Topical Meeting on Micro-Optics, Diffractive Optics and Optical MEMS (2006).
  4. L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
    [Crossref]
  5. J. Ihlemann, “Excimer laser ablation of fused silica,” Appl. Surf. Sci. 54, 193–200 (1992).
    [Crossref]
  6. P. Herman, “F2-laser microfabrication for photonics and biophotonics,” in Excimer Laser Technology, D. Basting and G. Marowsky, eds. (Springer, 2005).
  7. J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
    [Crossref]
  8. M. Wiesner and J. Ihlemann, “High resolution patterning of sapphire by F2-laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(1), 51–58 (2011).
    [Crossref]
  9. T. Fricke-Begemann and J. Ihlemann, “Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens,” Opt. Express 18(19), 19860–19866 (2010).
    [Crossref] [PubMed]
  10. M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
    [Crossref] [PubMed]
  11. R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
    [Crossref]
  12. T. W. Hodapp and P. R. Fleming, “Modeling topology formation during laser ablation,” J. Appl. Phys. 84(1), 577–583 (1998).
    [Crossref]
  13. M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
    [Crossref]
  14. R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
    [Crossref]
  15. R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [Crossref] [PubMed]

2016 (1)

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

2014 (1)

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

2012 (1)

M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
[Crossref]

2011 (1)

M. Wiesner and J. Ihlemann, “High resolution patterning of sapphire by F2-laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(1), 51–58 (2011).
[Crossref]

2010 (2)

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

T. Fricke-Begemann and J. Ihlemann, “Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens,” Opt. Express 18(19), 19860–19866 (2010).
[Crossref] [PubMed]

2009 (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

2007 (1)

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
[Crossref]

1998 (1)

T. W. Hodapp and P. R. Fleming, “Modeling topology formation during laser ablation,” J. Appl. Phys. 84(1), 577–583 (1998).
[Crossref]

1992 (2)

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

J. Ihlemann, “Excimer laser ablation of fused silica,” Appl. Surf. Sci. 54, 193–200 (1992).
[Crossref]

Barretto, R. P.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Braren, B.

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

Brusberg, L.

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

Davies, E.

M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
[Crossref]

Fleming, P. R.

T. W. Hodapp and P. R. Fleming, “Modeling topology formation during laser ablation,” J. Appl. Phys. 84(1), 577–583 (1998).
[Crossref]

Fricke-Begemann, T.

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

T. Fricke-Begemann and J. Ihlemann, “Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens,” Opt. Express 18(19), 19860–19866 (2010).
[Crossref] [PubMed]

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
[Crossref]

T. Fricke-Begemann, J. Meinertz, and J. Ihlemann, “Fabrication of diffractive micro lenses by direct laser ablation,” in Proceedings of the EOS Topical Meeting on Micro-Optics, Diffractive Optics and Optical MEMS (2006).

Gödecke, A.

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

Gower, M. C.

M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
[Crossref]

Hodapp, T. W.

T. W. Hodapp and P. R. Fleming, “Modeling topology formation during laser ablation,” J. Appl. Phys. 84(1), 577–583 (1998).
[Crossref]

Holmes, A. S.

M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
[Crossref]

Hüttmann, G.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

Ihlemann, J.

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

M. Wiesner and J. Ihlemann, “High resolution patterning of sapphire by F2-laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(1), 51–58 (2011).
[Crossref]

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

T. Fricke-Begemann and J. Ihlemann, “Direct light-coupling to thin-film waveguides using a grating-structured GRIN lens,” Opt. Express 18(19), 19860–19866 (2010).
[Crossref] [PubMed]

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
[Crossref]

J. Ihlemann, “Excimer laser ablation of fused silica,” Appl. Surf. Sci. 54, 193–200 (1992).
[Crossref]

T. Fricke-Begemann, J. Meinertz, and J. Ihlemann, “Fabrication of diffractive micro lenses by direct laser ablation,” in Proceedings of the EOS Topical Meeting on Micro-Optics, Diffractive Optics and Optical MEMS (2006).

Karstens, R.

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

Kelly, R.

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

Lankenau, E.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

Meinertz, J.

T. Fricke-Begemann, J. Meinertz, and J. Ihlemann, “Fabrication of diffractive micro lenses by direct laser ablation,” in Proceedings of the EOS Topical Meeting on Micro-Optics, Diffractive Optics and Optical MEMS (2006).

Messerschmidt, B.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Miotello, A.

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

Müller, H. H.

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

Neitz, M.

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

Otis, C. E.

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

Prießner, A.

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

Schnitzer, M. J.

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Schröder, H.

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

Schulz-Ruhtenberg, M.

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
[Crossref]

Wiesner, M.

M. Wiesner and J. Ihlemann, “High resolution patterning of sapphire by F2-laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(1), 51–58 (2011).
[Crossref]

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, “On the debris phenomenon with laser-sputtered polymers,” Appl. Phys. Lett. 60(24), 2980–2982 (1992).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Wiesner and J. Ihlemann, “High resolution patterning of sapphire by F2-laser ablation,” Appl. Phys., A Mater. Sci. Process. 103(1), 51–58 (2011).
[Crossref]

Appl. Surf. Sci. (1)

J. Ihlemann, “Excimer laser ablation of fused silica,” Appl. Surf. Sci. 54, 193–200 (1992).
[Crossref]

J. Appl. Phys. (2)

T. W. Hodapp and P. R. Fleming, “Modeling topology formation during laser ablation,” J. Appl. Phys. 84(1), 577–583 (1998).
[Crossref]

M. C. Gower, E. Davies, and A. S. Holmes, “Optical modeling of laser ablated microstructures,” J. Appl. Phys. 112(9), 093112 (2012).
[Crossref]

J. Phys. Conf. Ser. (1)

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys. Conf. Ser. 59, 206–209 (2007).
[Crossref]

Nat. Methods (1)

R. P. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Laser Technol. (1)

R. Karstens, A. Gödecke, A. Prießner, and J. Ihlemann, “Fabrication of 250-nm-hole arrays in glass and fused silica by UV laser ablation,” Opt. Laser Technol. 83, 16–20 (2016).
[Crossref]

Proc. SPIE (1)

L. Brusberg, M. Neitz, H. Schröder, T. Fricke-Begemann, and J. Ihlemann, “Fabrication of Fresnel micro lens array in borosilicate glass by F2 laser ablation for glass interposer application,” Proc. SPIE 8991, 89910H (2014).
[Crossref]

Rev. Sci. Instrum. (1)

M. Wiesner, J. Ihlemann, H. H. Müller, E. Lankenau, and G. Hüttmann, “Optical coherence tomography for process control of laser micromachining,” Rev. Sci. Instrum. 81(3), 033705 (2010).
[Crossref] [PubMed]

Other (4)

P. Herman, “F2-laser microfabrication for photonics and biophotonics,” in Excimer Laser Technology, D. Basting and G. Marowsky, eds. (Springer, 2005).

D.T. Moore, Selected Papers on Gradient-index Optics. SPIE-Milestone Series, vol. MS 67 (SPIE, 1993).

B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).

T. Fricke-Begemann, J. Meinertz, and J. Ihlemann, “Fabrication of diffractive micro lenses by direct laser ablation,” in Proceedings of the EOS Topical Meeting on Micro-Optics, Diffractive Optics and Optical MEMS (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of the F2-laser processing system.
Fig. 2
Fig. 2 (a) Schematic illustration of the mask projection scheme and the resulting GRIN-Fresnel hybrid optical element. (b) 3D-surface profile of the inner zones of a 23-zone Fresnel lens fabricated on the end face of a GRIN element as recorded by confocal microscopy.
Fig. 3
Fig. 3 Surface quality of ablation spots of size 50 x 50 µm2 in Li doped GRIN glass after irradiation with 20 laser pulses. At a fluence of 2 J/cm2 (a,b) the ablation profile exhibits a depth of 1.5 µm. At 5 J/cm2 (c,d) the profile shows a depth of 2.8 µm. (a,c): wide field microscopy images recorded with DIC contrast; (b,d): surface topography in false color representation as recorded by confocal microscopy.
Fig. 4
Fig. 4 Surface quality of Fresnel lenses fabricated in Ag doped GRIN glass at different fluences ((a,b): 5.2 J/cm2, (c,d): 7.5 J/cm2) as recorded by wide field microscopy with DIC contrast (a,c) and dark field contrast (b,d). In dark field contrast, micro cracks become visible as white lines due to increased scattering.
Fig. 5
Fig. 5 Etching rate for laser ablation of Ag ion doped GRIN glass at wavelength 157 nm versus applied laser fluence in logarithmic scale. The straight line shows a least squares approximation when assuming a logarithmic dependence.
Fig. 6
Fig. 6 Surface topography of a 5-zone Fresnel lens fabricated in Ag-doped GRIN glass measured by confocal microscopy. (a): 3D-representation in false color coding; (b): radial cross section (magenta) in comparison with the design specification (black).
Fig. 7
Fig. 7 Surface topography at the outer zones of a 5-zone Fresnel lens in Ag-doped glass measured by atomic force microscopy. (a): 3D view; (b) averaged radial AFM cross section (green) in comparison with a single line cross section recorded by confocal microscopy (magenta) and the design specification (black).
Fig. 8
Fig. 8 Effect of mask arrangement on the surface quality of a 23-zone Fresnel lens fabricated in Ag doped GRIN glass as recorded by wide field microscopy. (a,b): overview, in dark field contrast; (c,d): details in DIC contrast. The insets indicate the arrangement of the mask apertures and the direction of rotation of the lens substrate during processing for (a,c) and (b,d), respectively.
Fig. 9
Fig. 9 Effect of purging gas on the surface quality of a 5-zone Fresnel lens in Ag doped GRIN glass observed with wide field microscopy in DIC contrast. (a): nitrogen, (b): helium.
Fig. 10
Fig. 10 Fresnel lens with 23 zones and 1.8 mm diameter on the end face of an Ag ion doped GRIN lens. (a) overview in dark field contrast; (b) radial cross section through Fresnel zones 7 - 14 measured by confocal microscopy (averaged: green; single line: magenta) in comparison with the design specification (black).
Fig. 11
Fig. 11 Performance of a GRIN-Fresnel hybrid lens (1.8 mm diameter Ag ion doped GRIN lens combined with 23 zones Fresnel lens) in a confocal distance sensor. (a) Back reflected intensity from a mirror at two different wavelengths versus axial position. (b) Cross section of the focal spot in false color representation.

Metrics