Abstract

We demonstrate an ultra-high-bandwidth Mach-Zehnder electro-optic modulator (EOM), based on foundry-fabricated silicon (Si) photonics, made using conventional lithography and wafer-scale fabrication, oxide-bonded at 200C to a lithium niobate (LN) thin film. Our design integrates silicon photonics light input/output and optical components, such as directional couplers and low-radius bends. No etching or patterning of the thin film LN is required. This hybrid Si-LN MZM achieves beyond 106 GHz 3-dB electrical modulation bandwidth, the highest of any silicon photonic or lithium niobate (phase) modulator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

Ashutosh Rao, Aniket Patil, Jeff Chiles, Marcin Malinowski, Spencer Novak, Kathleen Richardson, Payam Rabiei, and Sasan Fathpour
Opt. Express 23(17) 22746-22752 (2015)

110 GHz CMOS compatible thin film LiNbO3 modulator on silicon

Andrew J. Mercante, Peng Yao, Shouyuan Shi, Garrett Schneider, Janusz Murakowski, and Dennis W. Prather
Opt. Express 24(14) 15590-15595 (2016)

Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform

Jeremy D. Witmer, Jeff T. Hill, and Amir H. Safavi-Naeini
Opt. Express 24(6) 5876-5885 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
    [Crossref]
  2. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
    [Crossref]
  3. M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.
  4. H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
    [Crossref]
  5. M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
    [Crossref]
  6. V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.
  7. L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
    [Crossref]
  8. L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica 1, 112–118 (2014).
    [Crossref]
  9. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
    [Crossref] [PubMed]
  10. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
    [Crossref] [PubMed]
  11. S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
    [Crossref]
  12. A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24, 15590–15595 (2016).
    [Crossref] [PubMed]
  13. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate mach–zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
    [Crossref] [PubMed]
  14. V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).
  15. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
    [Crossref] [PubMed]
  16. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref] [PubMed]
  17. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
    [Crossref]
  18. Y. Sakashita and H. Segawa, “Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
    [Crossref]
  19. J.-G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
    [Crossref]
  20. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
    [Crossref]
  21. M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  22. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  23. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref] [PubMed]
  24. J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
    [Crossref] [PubMed]
  25. J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
    [Crossref]
  26. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21, 6967–6972 (2013).
    [Crossref] [PubMed]
  27. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
    [Crossref]
  28. C. J. G. Kirkby, “Low-energy ion-beam processing damage in lithium niobate surface-acoustic-wave optical waveguide devices and its post-manufacture removal,” J. Mater. Sci. 27, 3637–3641 (1992).
    [Crossref]
  29. G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009).
    [Crossref]
  30. D. W. Dolfi and T. R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron Lett. 28, 1197–1198 (1992).
    [Crossref]
  31. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
    [Crossref]
  32. M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
    [Crossref]
  33. J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
    [Crossref]
  34. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
    [Crossref]
  35. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
    [Crossref]
  36. H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
    [Crossref]
  37. F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
    [Crossref]
  38. J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20, 23623 (2012).
    [Crossref] [PubMed]
  39. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320 (2013).
    [Crossref] [PubMed]
  40. M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
    [Crossref] [PubMed]
  41. G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
    [Crossref]
  42. N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M.-P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23, 13983 (2015).
    [Crossref] [PubMed]
  43. P. O. Weigel and S. Mookherjea, “Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips,” Opt. Mater. 66, 605–610 (2017).
    [Crossref]
  44. J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
    [Crossref]
  45. P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
    [Crossref] [PubMed]
  46. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  47. M. M. Howerton and W. K. Burns, Broadband traveling wave modulators in LiNbO3 (Cambridge University, 2002).
  48. P. O. Weigel and S. Mookherjea, “Process design kit and modulator simulation for hybrid silicon-lithium niobate integrated optics,” in Conference on Lasers and Electro-optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.126.
    [Crossref]
  49. A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–14 (2018).
  50. D. M. Pozar, Microwave Engineering, 4th ed (Wiley, 2012).
  51. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
    [Crossref]
  52. C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
    [Crossref]
  53. G. E. Betts, “Microwave bandpass modulators in lithium niobate,” Integr. Guid. Wave Opt. 1989 Tech. Dig. Ser. 4, 14–17 (1989).
  54. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
    [Crossref]

2018 (3)

2017 (3)

P. O. Weigel and S. Mookherjea, “Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips,” Opt. Mater. 66, 605–610 (2017).
[Crossref]

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

2016 (5)

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24, 15590–15595 (2016).
[Crossref] [PubMed]

A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate mach–zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41, 5700–5703 (2016).
[Crossref] [PubMed]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

2015 (7)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M.-P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23, 13983 (2015).
[Crossref] [PubMed]

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (1)

2008 (1)

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

2006 (2)

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

2004 (1)

2003 (1)

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
[Crossref]

2002 (1)

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

2001 (1)

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

2000 (2)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

1999 (1)

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

1998 (1)

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
[Crossref]

1997 (1)

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

1996 (1)

J.-G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

1995 (2)

Y. Sakashita and H. Segawa, “Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

1992 (2)

C. J. G. Kirkby, “Low-energy ion-beam processing damage in lithium niobate surface-acoustic-wave optical waveguide devices and its post-manufacture removal,” J. Mater. Sci. 27, 3637–3641 (1992).
[Crossref]

D. W. Dolfi and T. R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron Lett. 28, 1197–1198 (1992).
[Crossref]

1989 (1)

G. E. Betts, “Microwave bandpass modulators in lithium niobate,” Integr. Guid. Wave Opt. 1989 Tech. Dig. Ser. 4, 14–17 (1989).

1987 (1)

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Aboketaf, A.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
[Crossref]

Alloatti, L.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Aoki, K.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Arrangoiz-Arriola, P.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Atikian, H. A.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Ayata, M.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

Baeuerle, B.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Baida, F. I.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Bauters, J. F.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Becker, R. A.

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Bernal, M.-P.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M.-P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23, 13983 (2015).
[Crossref] [PubMed]

Bertrand, M.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Betts, G. E.

G. E. Betts, “Microwave bandpass modulators in lithium niobate,” Integr. Guid. Wave Opt. 1989 Tech. Dig. Ser. 4, 14–17 (1989).

Bo, F.

Bogaerts, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Bowers, J. E.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Brown, D.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Burek, M. J.

Burns, W. K.

M. M. Howerton and W. K. Burns, Broadband traveling wave modulators in LiNbO3 (Cambridge University, 2002).

Busch, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Cai, L.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Calero, V.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Cao, L.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
[Crossref]

Chandrasekhar, S.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Chen, J.

Chen, L.

Chen, X.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Chetrit, Y.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Chiles, J.

Courjal, N.

Dalton, L. R.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Davenport, M. L.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

DeRose, C. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

DeSalvo, R.

Devaux, F.

Dogheche, E.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Dolfi, D. W.

D. W. Dolfi and T. R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron Lett. 28, 1197–1198 (1992).
[Crossref]

Doylend, J. K.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Driscoll, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Eaglesham, D. J.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Elder, D. L.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Fathpour, S.

Fedoryshyn, Y.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Freude, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Gao, F.

Gerthoffer, A.

Ghione, G.

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009).
[Crossref]

Gilmer, G. H.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Gossmann, H.-J.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Greenblatt, A. S.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Griffin, B.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

Guilloux-Viry, M.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

Gutmann, R. J.

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Guyot, C.

Haffner, C.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Han, H.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Harrity, C.

Haynes, T. E.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Heck, M. J.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Heni, W.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Henrot, F.

Hettrich, H.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Hill, J. T.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Hillerkuss, D.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Hoessbacher, C.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Honardoost, A.

Hosoda, N.

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

Howerton, M. M.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

M. M. Howerton and W. K. Burns, Broadband traveling wave modulators in LiNbO3 (Cambridge University, 2002).

Howlader, M. M. R.

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Hu, H.

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

Huang, I.-C.

Imaeda, M.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Jacobson, D. C.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Jain, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Jaraíz, M.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Jayatilleka, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Jin, S.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

Josten, A.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Khan, S.

Kim, K.

J.-G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

Kim, M. J.

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

Kirkby, C. J. G.

C. J. G. Kirkby, “Low-energy ion-beam processing damage in lithium niobate surface-acoustic-wave optical waveguide devices and its post-manufacture removal,” J. Mater. Sci. 27, 3637–3641 (1992).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Koch, U.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

Koeber, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Koenig, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Kondo, A.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Kondo, J.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Koos, C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Korn, D.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Kozuka, Y.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Krahenbuhl, R.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Kumar, R.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Kurczveil, G.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kwong, D. L.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Lansiaux, X.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Lauermann, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Lentine, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

Leuthold, J.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Li, J.

Li, W.

Li, Y.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

Lin, Z.

Lipson, M.

Lo, G. Q.

Loncar, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Lu, J. Q.

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Luftman, H. S.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Ma, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Macario, J.

Maeda, R.

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

Malinowski, M.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Martin, R. D.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

McNab, S.

Mercante, A. J.

Minakata, M.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Mitomi, O.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

Miyazawa, H.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

Mizuno, Y.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Moeller, R. P.

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

Möller, M.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Mookherjea, S.

P. O. Weigel and S. Mookherjea, “Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips,” Opt. Mater. 66, 605–610 (2017).
[Crossref]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

P. O. Weigel and S. Mookherjea, “Process design kit and modulator simulation for hybrid silicon-lithium niobate integrated optics,” in Conference on Lasers and Electro-optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.126.
[Crossref]

Mori, T.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Murakowski, J.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Nagy, J.

Ndao, A.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M.-P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23, 13983 (2015).
[Crossref] [PubMed]

Nelson, R.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Nightingale, J. L.

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Niklaus, F.

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Noguchi, K.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
[Crossref]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

Novak, S.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

Palmer, R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Paolella, A.

Patil, A.

Perrin, A.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Poate, J. M.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

Pollick, A.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Pomerene, A. T.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

Pontius, P.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 4th ed (Wiley, 2012).

Prather, D. W.

Preble, S.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
[Crossref]

Rabiei, P.

Rafferty, C. S.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Ranganath, T. R.

D. W. Dolfi and T. R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron Lett. 28, 1197–1198 (1992).
[Crossref]

Rao, A.

Reano, R. M.

Remiens, D.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

Richardson, K.

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

Rong, H.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Ruterana, P.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Safavi-Naeini, A. H.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Sakashita, Y.

Y. Sakashita and H. Segawa, “Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
[Crossref]

Sakib, M.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Salamin, Y.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Sarabalis, C. J.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Savanier, M.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

Schindler, P. C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Schmid, R.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

Schneider, G.

Scholl, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Schuetz, C. A.

Segawa, H.

Y. Sakashita and H. Segawa, “Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
[Crossref]

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

Shams-Ansari, A.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Shi, S.

Shi, Y.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
[Crossref]

Srinivasan, S.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Sriram, S.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Starbuck, A. L.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

Stark, P.

Stemme, G.

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

Stenger, V.

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

Stenger, V. E.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Stern, B.

Stolk, P. A.

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Suga, T.

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

Sun, J.

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

Takagi, H.

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

Takatsuji, S.

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

Tang, Y.

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Toney, J.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Ulliac, G.

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Valery, J. A.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Venkataraman, V.

Vlasov, Y.

Vrhel, J. S.

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Wan, S.

Wang, C.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Wang, J.

Wang, Z.

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
[Crossref]

Weigel, P. O.

P. O. Weigel and S. Mookherjea, “Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips,” Opt. Mater. 66, 605–610 (2017).
[Crossref]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

P. O. Weigel and S. Mookherjea, “Process design kit and modulator simulation for hybrid silicon-lithium niobate integrated optics,” in Conference on Lasers and Electro-optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.126.
[Crossref]

Weikle, R. M.

Willis, P. C.

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Willner, A. E.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
[Crossref]

Winzer, P.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Witmer, J. D.

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

Woessner, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Wood, M. G.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Xie, L.

Xu, J.

Xu, L.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

Xu, Q.

Yan, L.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
[Crossref]

Yao, P.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

Yoon, J.-G.

J.-G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

Yu, H.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

Zablocki, A.

Zahner, M.

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

Zhang, G.

Zhang, H.

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

Zhu, S.

Appl. Phys. Lett. (5)

H. Takagi, R. Maeda, N. Hosoda, and T. Suga, “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett. 74, 2387–2389 (1999).
[Crossref]

M. M. R. Howlader, T. Suga, and M. J. Kim, “Room temperature bonding of silicon and lithium niobate,” Appl. Phys. Lett. 89, 031914 (2006).
[Crossref]

J.-G. Yoon and K. Kim, “Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process,” Appl. Phys. Lett. 68, 2523–2525 (1996).
[Crossref]

J. Chiles, M. Malinowski, A. Rao, S. Novak, K. Richardson, and S. Fathpour, “Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching,” Appl. Phys. Lett. 106, 111110 (2015).
[Crossref]

J. L. Nightingale, R. A. Becker, P. C. Willis, and J. S. Vrhel, “Characterization of frequency dispersion in Ti indiffused lithium niobate optical devices,” Appl. Phys. Lett. 51, 716–718 (1987).
[Crossref]

Electron Lett. (1)

D. W. Dolfi and T. R. Ranganath, “50 GHz velocity-matched broad wavelength LiNbO3 modulator with multimode active section,” Electron Lett. 28, 1197–1198 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000).
[Crossref]

M. J. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

A. Rao and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel. Top. Quantum Electron. 24, 1–14 (2018).

IEEE Photon. Technol. Lett. (2)

M. M. Howerton, R. P. Moeller, A. S. Greenblatt, and R. Krahenbuhl, “Fully packaged, broad-band LiNbO3 modulator with low drive voltage,” IEEE Photon. Technol. Lett. 12, 792–794 (2000).
[Crossref]

S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides,” IEEE Photon. Technol. Lett. 28, 736–739 (2016).
[Crossref]

Integr. Guid. Wave Opt. 1989 Tech. Dig. Ser. (1)

G. E. Betts, “Microwave bandpass modulators in lithium niobate,” Integr. Guid. Wave Opt. 1989 Tech. Dig. Ser. 4, 14–17 (1989).

J. Appl. Phys. (5)

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99, 031101 (2006).
[Crossref]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-Viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys. 90, 5274–5277 (2001).
[Crossref]

Y. Sakashita and H. Segawa, “Preparation and characterization of linbo3 thin films produced by chemical-vapor deposition,” J. Appl. Phys. 77, 5995–5999 (1995).
[Crossref]

P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, “Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon,” J. Appl. Phys. 81, 6031–6050 (1997).
[Crossref]

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys. 103, 034109 (2008).
[Crossref]

J. Light. Technol. (4)

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Light. Technol. 13, 1164–1168 (1995).
[Crossref]

J. Kondo, A. Kondo, K. Aoki, M. Imaeda, T. Mori, Y. Mizuno, S. Takatsuji, Y. Kozuka, O. Mitomi, and M. Minakata, “40-Gb/s x-cut LiNbO3 optical modulator with two-step back-slot structure,” J. Light. Technol. 20, 2110–2114 (2002).
[Crossref]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Light. Technol. 16, 615–619 (1998).
[Crossref]

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Light. Technol. 21, 2358–2367 (2003).
[Crossref]

J. Mater. Sci. (1)

C. J. G. Kirkby, “Low-energy ion-beam processing damage in lithium niobate surface-acoustic-wave optical waveguide devices and its post-manufacture removal,” J. Mater. Sci. 27, 3637–3641 (1992).
[Crossref]

Light. Sci. Appl. (1)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light. Sci. Appl. 4, e255 (2015).
[Crossref]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407 (2007).
[Crossref]

Opt. Comm. (1)

L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator,” Opt. Comm. 330, 40–44 (2014).
[Crossref]

Opt. Express (12)

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
[Crossref] [PubMed]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and mach-zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23, 22746–22752 (2015).
[Crossref] [PubMed]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26, 1547–1555 (2018).
[Crossref] [PubMed]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref] [PubMed]

A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24, 15590–15595 (2016).
[Crossref] [PubMed]

P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum,” Opt. Express 21, 6967–6972 (2013).
[Crossref] [PubMed]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
[Crossref] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

J. Macario, P. Yao, S. Shi, A. Zablocki, C. Harrity, R. D. Martin, C. A. Schuetz, and D. W. Prather, “Full spectrum millimeter-wave modulation,” Opt. Express 20, 23623 (2012).
[Crossref] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21, 8320 (2013).
[Crossref] [PubMed]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M.-P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23, 13983 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (3)

H. Han, L. Cai, and H. Hu, “Optical and structural properties of single-crystal lithium niobate thin film,” Opt. Mater. 42, 47–51 (2015).
[Crossref]

P. O. Weigel and S. Mookherjea, “Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips,” Opt. Mater. 66, 605–610 (2017).
[Crossref]

G. Ulliac, V. Calero, A. Ndao, F. I. Baida, and M.-P. Bernal, “Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application,” Opt. Mater. 53, 1–5 (2016).
[Crossref]

Optica (1)

Sci. Rep. (2)

J. D. Witmer, J. A. Valery, P. Arrangoiz-Arriola, C. J. Sarabalis, J. T. Hill, and A. H. Safavi-Naeini, “High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate,” Sci. Rep. 7, 46313 (2017).
[Crossref] [PubMed]

P. O. Weigel, M. Savanier, C. T. DeRose, A. T. Pomerene, A. L. Starbuck, A. L. Lentine, V. Stenger, and S. Mookherjea, “Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics,” Sci. Rep. 6, 22301 (2016).
[Crossref] [PubMed]

Science (1)

M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoessbacher, C. Haffner, D. L. Elder, L. R. Dalton, and J. Leuthold, “High-speed plasmonic modulator in a single metal layer,” Science 358, 630–632 (2017).
[Crossref] [PubMed]

Other (9)

J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.7.
[Crossref]

M. M. Howerton and W. K. Burns, Broadband traveling wave modulators in LiNbO3 (Cambridge University, 2002).

P. O. Weigel and S. Mookherjea, “Process design kit and modulator simulation for hybrid silicon-lithium niobate integrated optics,” in Conference on Lasers and Electro-optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.126.
[Crossref]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Broadband plasmonic modulator enabling single carrier operation beyond 100 Gbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper W4I.6.
[Crossref]

D. M. Pozar, Microwave Engineering, 4th ed (Wiley, 2012).

G. Ghione, Semiconductor Devices for High-Speed Optoelectronics (Cambridge University, 2009).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (Optical Society of America, 2018), paper Th4A.5.

V. Stenger, J. Toney, A. Pollick, J. Busch, J. Scholl, P. Pontius, and S. Sriram, “Engineered thin film lithium niobate substrate for high gain-bandwidth electro-optic modulators,” in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW3O.3.

V. E. Stenger, J. Toney, A. Pollick, D. Brown, B. Griffin, R. Nelson, and S. Sriram, “Low loss and low Vπ thin film lithium niobate on quartz electro-optic modulators,” in 2017 European Conference on Optical Communication, 1–3 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Progress of lithium niobate (LN) electro-optic modulators (EOM) in terms of 3-dB electrical modulation bandwidths [29], including traditional bulk LN EOMs [2, 30–33] and thin film LN EOMs [3,6–15]. The horizontal dashed black line at 50 GHz represents the 3-dB electrical (3-dBe) modulation bandwidth achievable by an all-Si EOM made in a foundry process [1]. The 3-dBe modulation bandwidth of the Si-LN device in this work is well beyond 106 GHz, the frequency limit of our experimental capabilities. The marker reported by ‘This work’ is the 1.5 dBe modulation bandwidth. An asterik (*) indicates a reference where the 3-dBe modulation bandwidth was not provided and had to be estimated from sideband measurements.
Fig. 2
Fig. 2 (a) Thin film x-cut lithium-niobate (LN) on insulator dies were bonded at room temperature to segmented dies of a patterned and planarized silicon-on-insulator (SOI) wafer which contained fabricated silicon photonic waveguide circuits. No etching or patterning of the LN film was performed. (b) Exploded representation of the EOM, where an unpatterned, un-etched LN thin film was bonded to a Mach-Zehnder interferometer fabricated in Si. Aluminum electrodes were deposited on a 50 nm SiO2 layer over the LN film. ‘SiP Region’ denotes the SiO2-clad region outside the bonded LN film containing Si waveguide circuits, such as feeder waveguides, bends, directional couplers, and path-length difference segments. (c) Top view of a representative fabricated hybrid Si-LN EOM test chip, which contains 60 EOM waveguide structures in parallel (in the north-south direction); for this report, test electrodes for use in push-pull configuration were only fabricated on one EOM device. (d) Composite microscope image of the EOM (not to scale). DC: directional coupler, PLD: path-length difference, GSG: ground-signal-ground, SiP: Si photonics.
Fig. 3
Fig. 3 (a) Cross-section of the MZM. hCMP is the thickness of the CMP SiO2 layer between the Si features and the LN film. (b) Measured hCMP across the 150 mm wafer. Discrete measurements made on test sites are interpolated in this smoothly-varying color representation. An outline of the chip measured in this work is shown with dashed lines. (c) Calculated 3-dB electrical modulation bandwidth, and (d) Calculated VπL for an electrical frequency of 10 GHz, both based on the measured SiO2 thickness shown in panel (b), and without changing any other physical parameters or structural definitions.
Fig. 4
Fig. 4 (a) Schematic of the EOM (not to scale, not showing electrodes), including two 3-dB directional couplers (DC) and a waveguide segment for path-length difference (PLD). Three optical waveguide modes are used, labeled as A, B, and C. Modes A (Si under SiO2) and B (Si under LN) have Si rib width w = 650 nm whereas mode C has w = 320 nm. (b) Dispersion curves (effective index versus w) in the hybrid region; w values for modes B and C are chosen to stay within the single-mode region of operation. An adiabatic waveguide transition (variation in w) is designed to evolve from mode B to C and vice versa. (c) Calculated Poynting vector components along the direction of propagation. Modes A and B are Si-guided and have a similar confinement fraction in Si. Mode C, with LN confinement factor (ΓLN) greater than 80%, is used in the phase-shifter segments.
Fig. 5
Fig. 5 (a) Normalized optical transmission of the Mach-Zehnder interferometric electro-optic Modulator (MZM), versus dc voltage at optical wavelength λ = 1560 nm. Fitted VπL = 6.7 V.cm for device length L = 0.5 cm. (b) Measured electrical S-parameters of the MZM’s coplanar-waveguide transmission line. (c) Left y-axis: extracted microwave phase index nm and microwave loss αm (dB/cm) over the dc-110 GHz frequency range. Right y-axis: characteristic electrode impedance Zc (Ω). (d) Modest-speed eye diagram (20 Gbit/s) using on-off keying (OOK) modulation, generated using off-the-shelf optical communications test equipment. The measured signal-to-noise ratio is approximately 9.0.
Fig. 6
Fig. 6 Electro-optic response of the EOM for both sidebands ((a) and (b)) from the optical spectrum analyzer. Solid black line: calculated response from electrical S-parameters of Fig. 5(c); black circles: electro-optic response from sideband OSA measurements. The 1.5 dB electrical modulation bandwidth is reached at the measurement limit of 106 GHz. The extrapolated 3 dB electrical modulation bandwidth indicated by the continuation of the solid black line is well over 200 GHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m ( ω ) = R L + R G R L | Z in Z in + Z G | | ( Z L + Z 0 ) F ( u ) + + ( Z L Z 0 ) F ( u ) ( Z L + Z G ) exp ( γ m L ) + ( Z L Z G ) exp ( γ m L ) |

Metrics