Abstract

A pulse width modulation (PWM) Brillouin amplification has been proposed and demonstrated to improve the signal-to-noise ratio (SNR) and sensitivity of phase-sensitive optical time domain reflectometry (Ф-OTDR) especially for the far end of a sensing fiber. In the logarithmic unit, arbitrary gain distribution can be realized with the customizable PWM function. The gain distribution is adjustable by tuning the PWM parameters. To prove the concept, three typical gain distributions including up-ramp sawtooth, sine and triangle have been achieved with the corresponding driving functions. In experiments, a linear PWM pump light has been used to amplify the backscattering Rayleigh light. The signal at the leading end has been enhanced by about 11.5 dB. Meanwhile, 9 dB transmission attenuation (along 25 km SMF) has also been compensated excellently. To verify the effectiveness of attenuation compensation, two vibrations with a frequency of 100 Hz and 300 Hz have been recovered accurately at the trailing end. Besides, preamplifier and acoustic-optic modulator (AOM) was used to suppress the ASE noise and further improve the effective ER, respectively. With that, lower relative intensity noise (RIN) has been obtained in the proposed system compared to the conventional Brillouin amplification in Ф-OTDR. So the proposed PWM Brillouin amplification not only improves the SNR but also equalizes the sensitivity along whole sensing fiber. It avoids the complex calibration and suppresses the false alarm rate in field application. Foreseeably, this scheme is universal and can be adopted by other distributed fiber optic technique to enhance the system performance.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts

Juan Pastor-Graells, Luis Romero Cortés, María R. Fernández-Ruiz, Hugo F. Martins, José Azaña, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Lett. 42(9) 1728-1731 (2017)

Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 23(23) 30448-30458 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  2. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  3. L. Thévenaz, “Next generation of optical fibre sensors: new concepts and perspectives,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157AN (2014).
  4. N. Guo, L. Wang, H. Wu, C. Jin, H. Y. Tam, and C. Lu, “Enhanced Coherent BOTDA System without Trace Averaging,” J. Lightwave Technol. 36(4), 871–878 (2018).
    [Crossref]
  5. Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
    [Crossref]
  6. Z. Wang, Z. Pan, Z. Fang, Q. Ye, B. Lu, H. Cai, and R. Qu, “Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source,” Opt. Lett. 40(22), 5192–5195 (2015).
    [Crossref] [PubMed]
  7. H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
    [Crossref] [PubMed]
  8. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  9. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
    [Crossref] [PubMed]
  10. H. Wu, Z. Wang, F. Peng, Z. Peng, X. Li, Y. Wu, and Y. Rao, “Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline,” In Proceedings of the 23rd OFS, OSA, Santander, 2014.
  11. Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
    [Crossref]
  12. T. Zhu, X. Xiao, Q. He, and D. Diao, “Enhancement of SNR and spatial resolution in φ-OTDR system by using two-dimensional edge detection method,” J. Lightwave Technol. 31(17), 2851–2856 (2013).
    [Crossref]
  13. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref] [PubMed]
  14. H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).
  15. Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
    [Crossref]
  16. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. Gonzalez-Herraez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  17. H. F. Martins, H. F. Martins, S. Martin-Lopez, P. Corredera, J. D. Ania-Castañon, O. Frazão, and M. Gonzalez-Herraez, “Distributed vibration sensing over 125 km with enhanced SNR using phi-OTDR over a URFL cavity,” J. Lightwave Technol. 33(12), 2628–2632 (2015).
    [Crossref]
  18. Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, J. J. Zeng, Y. Zhou, and Y. J. Rao, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Opt. Lett. 39(15), 4313–4316 (2014).
    [Crossref] [PubMed]
  19. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  20. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
    [Crossref]
  21. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18(15), 16102–16111 (2010).
    [Crossref] [PubMed]
  22. C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
    [Crossref]
  23. H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
    [Crossref]
  24. D. Mermelstein, E. Shacham, M. Biton, and S. Sternklar, “Brillouin amplification and processing of the Rayleigh scattered signal,” Opt. Lett. 40(14), 3340–3343 (2015).
    [Crossref] [PubMed]
  25. E. Liokumovitch, D. Gotliv, and S. Sternklar, “Detuned Brillouin amplification of OTDR signals with an enhanced signal-to-noise ratio,” Opt. Lett. 42(24), 5166–5169 (2017).
    [Crossref] [PubMed]
  26. M. Ren, D. P. Zhou, L. Chen, and X. Bao, “Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry,” Opt. Express 24(12), 13325–13333 (2016).
    [Crossref] [PubMed]
  27. C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
    [Crossref] [PubMed]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic press, 2007).
  29. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  30. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
    [Crossref]
  31. H. Zheng, J. Zhang, T. Zhu, G. Yin, Y. Bai, D. Qu, X. Huang, and F. Qiu, “Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding,” Opt. Express 26(14), 18270–18278 (2018).
    [Crossref] [PubMed]

2018 (4)

N. Guo, L. Wang, H. Wu, C. Jin, H. Y. Tam, and C. Lu, “Enhanced Coherent BOTDA System without Trace Averaging,” J. Lightwave Technol. 36(4), 871–878 (2018).
[Crossref]

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

H. Zheng, J. Zhang, T. Zhu, G. Yin, Y. Bai, D. Qu, X. Huang, and F. Qiu, “Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding,” Opt. Express 26(14), 18270–18278 (2018).
[Crossref] [PubMed]

2017 (2)

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

E. Liokumovitch, D. Gotliv, and S. Sternklar, “Detuned Brillouin amplification of OTDR signals with an enhanced signal-to-noise ratio,” Opt. Lett. 42(24), 5166–5169 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (3)

2014 (3)

2013 (2)

2012 (2)

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

2010 (2)

2007 (1)

1998 (1)

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1986 (1)

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

Ania-Castañon, J. D.

Ansari, F.

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Ao, L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Atkins, C. G.

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

Ba, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Bai, Y.

Baker, C.

Bao, X.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

M. Ren, D. P. Zhou, L. Chen, and X. Bao, “Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry,” Opt. Express 24(12), 13325–13333 (2016).
[Crossref] [PubMed]

C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
[Crossref] [PubMed]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Biton, M.

Cai, H.

Chang, H. Q.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Chen, L.

M. Ren, D. P. Zhou, L. Chen, and X. Bao, “Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry,” Opt. Express 24(12), 13325–13333 (2016).
[Crossref] [PubMed]

C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424–19434 (2016).
[Crossref] [PubMed]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Corredera, P.

Cotter, D.

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

Diao, D.

Dong, Y.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Fan, M. Q.

Fang, Z.

Filograno, M. L.

Frazão, O.

Gonzalez-Herraez, M.

Gotliv, D.

Grosche, G.

Guo, N.

He, H.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

He, Q.

Huang, X.

Ji, X. L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Jia, X. H.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Jin, C.

Juarez, J. C.

Kong, Y.

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Li, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

Li, J.

Li, Z.

Lin, J.

Liokumovitch, E.

Liu, Y.

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Lu, B.

Lu, C.

Lu, Y.

Lu, Z.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Luo, B.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Mafang, S. F.

Martin-Lopez, S.

Martins, H. F.

Mermelstein, D.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Pan, W.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Pan, Z.

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Peng, F.

Qin, Z.

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

Qiu, F.

Qu, D.

Qu, R.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Rao, Y. J.

Ren, M.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Schnatz, H.

Shacham, E.

Shao, L.-Y.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Shi, Y.

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Smith, D. W.

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

Soto, M. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Sternklar, S.

Tam, H. Y.

Taylor, H. F.

Taylor, T.

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Terra, O.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thévenaz, L.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

Vanus, B.

Wang, B.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Wang, L.

Wang, Z.

Wang, Z. N.

Wu, H.

Wuilpart, M.

Wyatt, R.

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

Xiao, X.

Xu, C.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Yan, L.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Yao, X. S.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

Ye, Q.

Yin, G.

Zeng, J. J.

Zhang, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, W. L.

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Zhang, Z.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Zheng, H.

Zhou, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Zhou, D. P.

Zhou, Y.

Zhu, T.

Zou, X.

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

H. He, L.-Y. Shao, B. Luo, Z. Li, X. Zou, Z. Zhang, W. Pan, and L. Yan, “Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing,” Opt. Express 24(5), 4842–4855 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Electron. Lett. (1)

C. G. Atkins, D. Cotter, D. W. Smith, and R. Wyatt, “Application of Brillouin amplification in coherent optical transmission,” Electron. Lett. 22(10), 556–558 (1986).
[Crossref]

IEEE Photonics J. (1)

H. He, L.-Y. Shao, H. Li, B. Luo, X. Zou, Z. Zhang, W. Pan, and L. Yan, “SNR Enhancement in Phase-Sensitive OTDR with Adaptive 2-D Bilateral Filtering Algorithm,” IEEE Photonics J. 9(3), 1–10 (2017).

IEEE Photonics Technol. Lett. (4)

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

H. Q. Chang, X. H. Jia, X. L. Ji, C. Xu, L. Ao, H. Wu, Z. N. Wang, and W. L. Zhang, “DBA-based BOTDA using optical comb pump and pulse coding with a single laser,” IEEE Photonics Technol. Lett. 28(10), 1142–1145 (2016).
[Crossref]

Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technol. Lett. 24(7), 542–544 (2012).
[Crossref]

Z. Qin, T. Zhu, L. Chen, and X. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR,” IEEE Photonics Technol. Lett. 23(15), 1091–1093 (2011).
[Crossref]

J. Lightwave Technol. (6)

Light Sci. Appl. (1)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. 7(1), 32 (2018).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Kong, Y. Liu, Y. Shi, F. Ansari, and T. Taylor, “Research on the 𝜙-OTDR fiber sensor sensitive for all of the distance,” Opt. Commun. 407, 148–152 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Other (3)

L. Thévenaz, “Next generation of optical fibre sensors: new concepts and perspectives,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157AN (2014).

H. Wu, Z. Wang, F. Peng, Z. Peng, X. Li, Y. Wu, and Y. Rao, “Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline,” In Proceedings of the 23rd OFS, OSA, Santander, 2014.

G. P. Agrawal, Nonlinear Fiber Optics (Academic press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The comparison of the probe pulse generated by EOM and AOM in Brillouin amplification. (a) The schematic of EOM and (b) AOM based probe pulse.
Fig. 2
Fig. 2 The comparison of the proposed method with the conventional method. (a) The schematic of the conventional CW pump and (b) the proposed PWM pump.
Fig. 3
Fig. 3 Experimental setup. NLL: narrow linewidth laser; PC: polarization controller; AOM: acoustic-optic modulator; EDFA: erbium doped fiber amplifier; OBPF: optical bandpass filter; FUT: fiber under test; ISO: isolator; EOM: electrical optical modulator; PWM: pulse width modulation; SMF: single mode fiber; PD: photodetector; OSC: oscilloscope.
Fig. 4
Fig. 4 (a) The transmission spectra before (ORG, blue solid line) and after (Pump, red solid line) carrier suppression modulation; (b) the Brillouin gain spectrum of the gain fiber.
Fig. 5
Fig. 5 Noise suppression with pre-amplification (PA) before Brillouin amplification (BA) for backscattering Rayleigh light. (a) The test results with direct Brillouin amplification (without pre-amplification) and (b) the corresponding details. (c) The test results with pre-amplification before Brillouin amplification and (d) the corresponding details.
Fig. 6
Fig. 6 (a) The optical spectra and (b) the electrical spectrum when AOM turns on and off, respectively.
Fig. 7
Fig. 7 The effect of the pump frequency on the backscattering signals. (a) The outputs of the PD at the condition of pulse off; (b) the backscattering signals amplified by pump lights with modulation frequency of 10670, 10770 and 10870 MHz, respectively.
Fig. 8
Fig. 8 The gain distribution with different modulation functions of the PWM Brillouin amplification. (a), (b) and (c) are the gain distributions with modulation function of up-ramp sawtooth, triangle and sine, respectively; (d) the comparison of the gain distribution with different functions in logarithmic unit.
Fig. 9
Fig. 9 The effect of different parameters on the gain distribution in PWM Brillouin amplification. (a) The gain distribution with different modulation frequency (MF); (b) the gain distribution with different duty ratio; (c) the gain distribution with different pulse period and (d) the corresponding details of the gain curves.
Fig. 10
Fig. 10 The effect of the conventional CW Brillouin amplification and the proposed PWM Brillouin amplification on the backscattering Rayleigh signal. (a) The backscattering Rayleigh signals without and with CW Brillouin amplification (CW BA); (b) the backscattering Rayleigh signals without and with PWM Brillouin amplification (PWM BA).
Fig. 11
Fig. 11 The vibration tests at 25km of the fiber link. (a) The location and frequency of the vibration; (b) and (c) the time domain signals and the corresponding frequency spectra of the vibrations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P Sout = P Sin exp( g B A eff P P L eff αL ) G=10lg( P Sout P Sin ) =10 g B A eff L eff lg(e) P P 10αLlg(e)
P Sout = P Sin exp( g B A eff P P (t) L eff αL ) G=10lg( P Sout P Sin ) =10 g B A eff L eff lg(e) P P (t)10αLlg(e)
σ R j = 1 M i=1 M ( R i,j R ¯ j ) 2 RI N j = σ R j R ¯ j S RIN = 1 N j=1 N RI N j

Metrics