Abstract

We propose a model for resonantly pumped Pr3+-doped chalcogenide fiber amplifiers, which includes excited state absorption and the full spectral amplified spontaneous emission spanning from 2 μm to 6 μm. Based on this model, the observed near- and mid-infrared photoluminescence generated from Pr3+-doped chalcogenide fiber is explained. Then the output properties of a 4.1 μm resonantly pumped Pr3+-doped chalcogenide fiber amplifier are simulated in both co- and counter-pumping schemes. Results show that the 4.1 μm counter-pumped fiber amplifier can achieve a power conversion efficiency (PCE) of over 62.8% for signal wavelengths ranging from 4.5 μm to 5.3 μm. This is, to our best knowledge, the highest simulated PCE for a Pr3+-doped chalcogenide fiber amplifier.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband mid-infrared emission from a Pr3+/Dy3+ co-doped selenide-chalcogenide glass fiber spectrally shaped by varying the pumping arrangement [Invited]

Lukasz Sojka, Zhuoqi Tang, Dinuka Jayasuriya, Meili Shen, David Furniss, Emma Barney, Trevor M. Benson, Angela B. Seddon, and Slawomir Sujecki
Opt. Mater. Express 9(5) 2291-2306 (2019)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon
Opt. Express 22(18) 21236-21252 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Behzadi, M. Aliannezhadi, M. Hossein-Zadeh, and R. K. Jain, “Design of a new family of narrow-linewidth mid-infrared lasers,” J. Opt. Soc. Am. B 34(12), 2501–2513 (2017).
    [Crossref]
  2. F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
    [Crossref]
  3. M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
    [Crossref]
  4. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  5. J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
    [Crossref]
  6. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  7. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
    [Crossref]
  8. S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
    [Crossref]
  9. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref] [PubMed]
  10. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  11. M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
    [Crossref] [PubMed]
  12. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
    [Crossref] [PubMed]
  13. O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
    [Crossref]
  14. V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
    [Crossref] [PubMed]
  15. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  16. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
    [Crossref] [PubMed]
  17. R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74(11), 5954–5961 (1981).
    [Crossref]
  18. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  19. L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  20. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  21. L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
    [Crossref]
  22. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
    [Crossref]
  23. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).
  24. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
    [Crossref]
  25. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
    [Crossref]
  26. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
    [Crossref]
  27. A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.
    [Crossref]
  28. L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
    [Crossref]
  29. J. Hu, C. R. Menyuk, C. Wei, L. Brandon Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
    [Crossref] [PubMed]
  30. M. Khamis and K. Ennser, “Design of highly efficient Pr3+ -doped chalcogenide fiber laser,” IEEE Photonics Technol. Lett. 29(18), 1580–1583 (2017).
    [Crossref]
  31. L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).
  32. P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
    [Crossref]
  33. R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
    [Crossref]
  34. P. Becker, N. Olsson, and J. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic 1999), Chap. 6.
  35. A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16(10), 1865–1873 (1998).
    [Crossref]
  36. E. Yahel and A. Hardy, “Modeling high-power Er3+-Yb3+ codoped fiber lasers,” J. Lightwave Technol. 21(9), 2044–2052 (2003).
    [Crossref]
  37. E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
    [Crossref]
  38. X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 microm fiber lasers with different pumping designs,” Appl. Opt. 45(27), 7118–7125 (2006).
    [Crossref] [PubMed]

2018 (1)

2017 (7)

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

B. Behzadi, M. Aliannezhadi, M. Hossein-Zadeh, and R. K. Jain, “Design of a new family of narrow-linewidth mid-infrared lasers,” J. Opt. Soc. Am. B 34(12), 2501–2513 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. Khamis and K. Ennser, “Design of highly efficient Pr3+ -doped chalcogenide fiber laser,” IEEE Photonics Technol. Lett. 29(18), 1580–1583 (2017).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

2016 (3)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (3)

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (1)

2010 (1)

2009 (2)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

2008 (2)

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

2006 (2)

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 microm fiber lasers with different pumping designs,” Appl. Opt. 45(27), 7118–7125 (2006).
[Crossref] [PubMed]

2004 (1)

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

2003 (1)

2002 (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

2001 (1)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

1998 (2)

A. A. Hardy and R. Oron, “Amplified spontaneous emission and Rayleigh backscattering in strongly pumped fiber amplifiers,” J. Lightwave Technol. 16(10), 1865–1873 (1998).
[Crossref]

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

1981 (1)

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74(11), 5954–5961 (1981).
[Crossref]

Adam, J.-L.

Aggarwal, I.

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Aggarwal, I. D.

J. Hu, C. R. Menyuk, C. Wei, L. Brandon Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Ahn, J. T.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Akimov, V. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Aliannezhadi, M.

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74(11), 5954–5961 (1981).
[Crossref]

Anashkina, E.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Bah, S. T.

Bawden, N.

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Behzadi, B.

Benson, T.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Benson, T. M.

Beres-Pawlik, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Bernier, M.

Bharathan, G.

Bisson, S.

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

Brandon Shaw, L.

Caron, N.

Choi, Y. G.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Chung, W. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Churbanov, M.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Cole, B.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Dantanarayana, H.

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

De Natale, P.

Doualan, J.-L.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

El-Amraoui, M.

Ennser, K.

M. Khamis and K. Ennser, “Design of highly efficient Pr3+ -doped chalcogenide fiber laser,” IEEE Photonics Technol. Lett. 29(18), 1580–1583 (2017).
[Crossref]

Faber, E.

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Falconi, M. C.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Fay, M.

Fedorov, V.

Fedorov, V. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Ferrari, M.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Fischer, H.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Fortin, V.

Frolov, M. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Frumar, M.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Frumarova, B.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Fuerbach, A.

Furniss, D.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Gapontsev, V.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hardy, A.

Hardy, A. A.

Harren, F.

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

Hecker, A.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Henderson-Sapir, O.

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hossein-Zadeh, M.

Hu, J.

Hudson, D. D.

Jackson, S. D.

Jain, R.

Jain, R. K.

Jeon, D. Y.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Karaksina, E.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Khamis, M.

M. Khamis and K. Ennser, “Design of highly efficient Pr3+ -doped chalcogenide fiber laser,” IEEE Photonics Technol. Lett. 29(18), 1580–1583 (2017).
[Crossref]

Kincl, M.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Korostelin, Y. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Kotereva, T.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Kozlovsky, V. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Kühnemann, F.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Landman, A. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Li, J.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74(11), 5954–5961 (1981).
[Crossref]

Maes, F.

Majewski, M. R.

Malouf, A.

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Martis, A.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Martyshkin, D.

Menyuk, C. R.

Messaddeq, Y.

Mirov, M.

Mirov, S. B.

S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers,” Opt. Mater. Express 1(5), 898–910 (2011).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Mlynek, J.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Moizan, V.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Moncorgé, R.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Moskalev, I.

Munch, J.

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

Nazabal, V.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Neate, N.

Nemec, P.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Ngai, A.

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

Oladeji, A.

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Oron, R.

Ottaway, D. J.

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

Palma, G.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Parchatka, U.

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Park, B. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Podmar’kov, Y. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Prudenzano, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Quimby, R.

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Sakr, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Sanghera, J.

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Sanghera, J. S.

J. Hu, C. R. Menyuk, C. Wei, L. Brandon Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref] [PubMed]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Scalari, G.

Schiller, S.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Schneider, K.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Seddon, A.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Seddon, A. B.

Seo, H. S.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Shaw, L.

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Shiryaev, V.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Snopatin, G.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Sojka, L.

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Sójka, L.

Sourková, P.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Sujecki, S.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Taccheo, S.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Tang, Z.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. M. Benson, and A. B. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. Seddon, T. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Thielen, P.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J.-L. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Urban, W.

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

Vallée, R.

van Herpen, M.

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

Vitiello, M. S.

Voronov, A. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Wei, C.

Weston, N.

Williams, B.

Woodward, R. I.

Yahel, E.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Zhu, H.

Zhu, X.

Anal. Methods (1)

J. Li, U. Parchatka, and H. Fischer, “A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser,” Anal. Methods 6(15), 5483–5488 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

F. Kühnemann, K. Schneider, A. Hecker, A. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[Crossref]

M. van Herpen, S. Bisson, A. Ngai, and F. Harren, “Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator,” Appl. Phys. B 78(3–4), 281–286 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

O. Henderson-Sapir, A. Malouf, N. Bawden, J. Munch, S. D. Jackson, and D. J. Ottaway, “Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 23(3), 1–9 (2017).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+: Ga5Ge20Sb10S65 PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

M. Khamis and K. Ennser, “Design of highly efficient Pr3+ -doped chalcogenide fiber laser,” IEEE Photonics Technol. Lett. 29(18), 1580–1583 (2017).
[Crossref]

R. Quimby, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

J. Chem. Phys. (1)

R. M. Almeida and J. D. Mackenzie, “Vibrational spectra and structure of fluorozirconate glasses,” J. Chem. Phys. 74(11), 5954–5961 (1981).
[Crossref]

J. Lightwave Technol. (3)

J. Lumin. (2)

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 μm) spectroscopic properties of Pr3+ -doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

J. Quantum Electron. (2)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77-5.05 μm tunable solid-state lasers based on Fe2+ -doped ZnSe crystals operating at low and room temperatures,” J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

V. Fortin, M. Bernier, S. T. Bah, and R. Vallée, “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett. 40(12), 2882–2885 (2015).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref] [PubMed]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
[Crossref] [PubMed]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, C. Wei, L. Brandon Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref] [PubMed]

Opt. Mater. (2)

L. Sojka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. Seddon, T. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr(3+)-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. Seddon, T. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), s11082 (2017).

Other (2)

P. Becker, N. Olsson, and J. Simpson, Erbium-Doped Fiber Amplifiers Fundamentals and Technology (Academic 1999), Chap. 6.

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Experimental set-up for the PL measurements of Pr3+-doped chalcogenide-selenide fiber. A quantum cascade laser (QCL) operating at a wavelength of 4.1 μm was the pump laser. Expanded InGaAs, and HgCdTe, detectors were respectively used for the NIR PL, and MIR PL, signal detection (LPF: long-pass filter).
Fig. 2
Fig. 2 The output: (a) MIR PL spectrum and (b) NIR PL spectrum, were obtained from Pr3+-doped Ga-Ge-Se-As fiber, resonantly pumped at the wavelength 4.1 μm, with pump power of 100 mW. Each spectrum was normalized to ‘1’ by dividing by its highest PL intensity.
Fig. 3
Fig. 3 (a) Simplified electronic energy level diagram of Pr3+ ions; the GSA and ESA processes of absorption of the 4.1 μm pump photons in Pr3+ -doped fiber are respectively described by the red and blue solid arrows. The fluorescence at peak wavelengths around 2.5 μm and 4.7 μm, respectively, are attributed to different energy transitions that are respectively presented by the blue and red dashed arrows. (b) Calculated absorption cross sections of the ESA and the GSA in Pr3+-doped chalcogenide fiber [31].
Fig. 4
Fig. 4 Energy levels and transitions of Pr3+ ions.
Fig. 5
Fig. 5 Both absorption (solid curve) and emission (dashed curve) cross sections from the Pr3+-doped chalcogenide fiber. Note that the true ACS of the 3H43H5 transition is presented with the underlying H-Se impurity vibrational absorption band removed [27, 28, 31].
Fig. 6
Fig. 6 (a) Calculated MIR PL spectrum (solid curve) and (b) comparison with the experimental MIR PL spectrum (dashed curve) over the available wavelength range from 4.3 μm to 6 μm. Note that the experimentally measured MIR PL spectrum shown in Section 2 was recorded from 4.3 μm to 6 μm to filter the residual 4.1 μm pump laser from the output MIR PL spectrum.
Fig. 7
Fig. 7 (a) Calculated NIR PL spectrum (solid curve) and (b) comparison with the experimental NIR PL spectrum (dashed curve) over the wavelength range from 1.8 μm to 2.8 μm.
Fig. 8
Fig. 8 Cross sections of the ESA (σa23), GSA (σa12), emission from the 3H53H4 transition (σe21) in the Pr3+-doped chalcogenide-selenide fiber [31]. The selected range of the pump wavelength is shown in the gray region.
Fig. 9
Fig. 9 The optical structure of the simulated 4.1 μm co-pumped Pr3+-doped chalcogenide-selenide fiber amplifier.
Fig. 10
Fig. 10 (a) The output signal power evolution and (b) the SNR evolution with signal wavelength varying from 4.5 μm to 5.3 μm and active fiber lengths varying from 0.5 m to 5 m in a 4.1 μm co-pumped Pr3+-doped chalcogenide-selenide fiber amplifier.
Fig. 11
Fig. 11 For a 4.1 μm co-pumped Pr3+-doped chalcogenide-selenide fiber amplifier seeded with a 4.53 μm signal laser: Output spectra (red curves) and backward ASE spectra (blue dashed curves) for a: (a) 1.5 m long active fiber, (b) 3 m long active and (c) 4.5 m long active fiber. Power distributions of pump (blue curves), signal (red curves), forward (green dashed curves) and backward ASE (purple dashed curves) for a: (d) 1.5 m long active fiber, (e) 3 m long active fiber and (f) 4.5 m long active fiber.
Fig. 12
Fig. 12 For a 4.1 μm co-pumped Pr3+-doped chalcogenide-selenide fiber amplifier seeded with a 4.82 μm signal laser: Output spectra (red curves) and backward ASE spectra (blue dashed curves) for a: (a) 1.5 m long active fiber, (b) 3 m long active and (c) 4.5 m long active fiber. Power distributions of pump (blue curves), signal (red curves), forward (green dashed curves) and backward ASE (purple dashed curves) for a: (d) 1.5 m long active fiber, (e) 3 m long active fiber and (f) 4.5 m long active fiber.
Fig. 13
Fig. 13 For a 4.1 μm co-pumped Pr3+-doped chalcogenide-selenide fiber amplifier seeded with a 5.1 μm signal laser: Output spectra (red curves) and backward ASE spectra (blue dashed curves) for a: (a) 1.5 m long active fiber, (b) 3 m long active and (c) 4.5 m long active fiber. Power distributions of pump (blue curves), signal (red curves), forward (green dashed curves) and backward ASE (purple dashed curves) for a: (d) 1.5 m long active fiber, (e) 3 m long active fiber and (f) 4.5 m long active fiber.
Fig. 14
Fig. 14 The optical structure of the simulated 4.1 μm counter-pumped Pr3+-doped-selenide chalcogenide fiber amplifier.
Fig. 15
Fig. 15 (a) The output signal power evolution and (b) the SNR evolution with signal wavelength varying from 4.5 μm to 5.3 μm and active fiber lengths varying from 0.5 m to 5 m in a 4.1 μm counter-pumped Pr3+-doped chalcogenide fiber amplifier.
Fig. 16
Fig. 16 For a 4.1 μm counter-pumped Pr3+-doped chalcogenide-selenide fiber amplifier seeded with a 4.53 μm signal laser: Output spectra (red curves) and backward ASE spectra (blue dashed curves) for a: (a) 2.2 m long active fiber, (b) 3 m long active and (c) 4 m long active fiber. Power distributions of pump (blue curves), signal (red curves), forward (green dashed curves) and backward ASE (purple dashed curves) for a: (d) 2.2 m long active fiber, (e) 3 m long active fiber and (f) 4 m long active fiber. Note that the power distributions for 2.2 m and 3 m long fibers are respectively presented on a log. Scale to distinguish the curves.
Fig. 17
Fig. 17 For a 4.1 μm counter-pumped Pr3+-doped chalcogenide-selenide fiber amplifier seeded with a 4.82 μm signal laser: Output spectra (red curves) and backward ASE spectra (blue dashed curves) for a: (a) 2.2 m long active fiber, (b) 3 m long active and (c) 4 m long active fiber. Power distributions of pump (blue curves), signal (red curves), forward (green dashed curves) and backward ASE (purple dashed curves) for a: (d) 2.2 m long active fiber, (e) 3 m long active fiber and (f) 4 m long active fiber. Note that the power distributions for 2.2 m and 3 m long fibers are respectively presented on a log. Scale to distinguish the curves.
Fig. 18
Fig. 18 The dependency of maximum achievable PCE of the 4.1 μm resonantly pumped Pr3+-doped chalcogenide-selenide fiber amplifier with: (a) signal wavelength, varied between 4.5 μm to 5.3 μm for the co- and counter-pumping scheme. (b) Background loss for the counter-pumping scheme with a 4.82 μm signal laser.
Fig. 19
Fig. 19 For a 4.5 μm counter-pumped Pr3+-doped chalcogenide-selenide fiber amplifier: (a) output signal power evolution, at a signal wavelength within the range 4.6 μm to 5.3μm and fiber length from 0.5 m to 5 m. (b) Maximum achievable PCE evolution.

Tables (1)

Tables Icon

Table 1 Modeling parameters for PL generated from Pr3+-doped chalcogenide glass fiber. (Exp. means parameters from our experiment.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N 3 dt = N 1 W a13 + N 2 W a23 N 3 ( W e31 + W e32 + W 3 ) d N 2 dt = N 1 W a12 N 2 ( W e21 + W a23 + W 21 )+ N 3 ( W e32 + W 32 ). N= N 1 + N 2 + N 3
N 1 W a13 + N 2 W a23 N 3 ( W e31 + W e32 + W 3 )=0 N 1 W a12 N 2 ( W e21 + W a23 + W 21 )+ N 3 ( W e32 + W 32 )=0. N= N 1 + N 2 + N 3
W aij = 1 Ahc P(λ) σ aij (λ)Γ(λ) λdλ W eij = 1 Ahc P(λ) σ eij (λ)Γ(λ) λdλ
dP(λ) dz =gΓ(λ)P(λ)+( N 3 σ e32 + N 2 σ e21 + N 3 σ e31 )Γ(λ) P spon αP(λ)
g=( N 3 σ e32 N 2 σ a23 )+( N 2 σ e21 N 1 σ a12 )+( N 3 σ e31 N 1 σ a13 ).
SNR=10lg( P signal P output P signal )

Metrics