Abstract

Refocusing after Scanning using Helical phase engineering (RESCH) microscopy has previously been demonstrated to provide volumetric information from a single 2D scan. However, the practical application of this method is challenging due to its limited image acquisition speed and spatial resolution. Here, we report on a combination of RESCH and multifocal structured illumination microscopy (MSIM) to improve the image acquisition speed and spatial resolution. A phase mask is introduced to modulate the conventional point spread function (PSF) to the double-helix PSF (DH-PSF), which provides volumetric information, and meanwhile, sparse multifocal illumination patterns are generated by a digital micromirror device (DMD) for parallel 3D subdiffractive imaging information acquisition. We also present a strategy for processing the collected raw data with a Richardson-Lucy deconvolution and pixel reassignment algorithm to improve the spatial resolution of the depth estimation and imaging performance. The proposed 3D image scanning microscopy can record 3D specimen information and the corresponding depth information from a single multi-spot 2D planar scan, which ensures faster data acquisition, larger field of view, and higher spatial resolution than RESCH. Finally, we demonstrate the capability of our system with actual experiments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D image scanning microscopy with engineered excitation and detection

Clemens Roider, Rafael Piestun, and Alexander Jesacher
Optica 4(11) 1373-1381 (2017)

Deconvolution approach for 3D scanning microscopy with helical phase engineering

Clemens Roider, Rainer Heintzmann, Rafael Piestun, and Alexander Jesacher
Opt. Express 24(14) 15456-15467 (2016)

Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

Ginni Grover, Keith DeLuca, Sean Quirin, Jennifer DeLuca, and Rafael Piestun
Opt. Express 20(24) 26681-26695 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Confocal Microscopy (Academic, 1990).
  2. C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80(2), 53–54 (1988).
  3. C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref] [PubMed]
  4. A. Jesacher, M. Ritschmarte, and R. Piestun, “Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability,” Optica 2(3), 210–213 (2015).
    [Crossref]
  5. C. Roider, R. Heintzmann, R. Piestun, and A. Jesacher, “Deconvolution approach for 3D scanning microscopy with helical phase engineering,” Opt. Express 24(14), 15456–15467 (2016).
    [Crossref] [PubMed]
  6. C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
    [Crossref]
  7. Z. Wang, Y. Cai, Y. Liang, X. Zhou, S. Yan, D. Dan, P. R. Bianco, M. Lei, and B. Yao, “Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function,” Biomed. Opt. Express 8(12), 5493–5506 (2017).
    [Crossref] [PubMed]
  8. R. Berlich, A. Bräuer, and S. Stallinga, “Single shot three-dimensional imaging using an engineered point spread function,” Opt. Express 24(6), 5946–5960 (2016).
    [Crossref] [PubMed]
  9. A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
    [Crossref] [PubMed]
  10. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
    [Crossref]
  11. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010).
    [Crossref] [PubMed]
  12. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
    [Crossref] [PubMed]
  13. S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
    [Crossref] [PubMed]
  14. G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
    [Crossref] [PubMed]
  15. C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation,” Opt. Express 22(4), 4029–4037 (2014).
    [Crossref] [PubMed]
  16. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972).
    [Crossref]

2017 (2)

2016 (2)

2015 (1)

2014 (1)

2012 (2)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (1)

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

2008 (1)

1988 (1)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80(2), 53–54 (1988).

1972 (1)

Berlich, R.

Bernet, S.

Bianco, P. R.

Bräuer, A.

Cai, Y.

Chitnis, A. B.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Combs, C. A.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Dalle Nogare, D.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Dan, D.

DeLuca, J.

DeLuca, K.

Enderlein, J.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Fiedler, C.

Fischer, R. S.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Greengard, A.

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

Grover, G.

Heintzmann, R.

Jesacher, A.

Lei, M.

Liang, Y.

Mione, M.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Müller, C. B.

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Parekh, S. H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Pavani, S. R. P.

Piestun, R.

C. Roider, R. Piestun, and A. Jesacher, “3D image scanning microscopy with engineered excitation and detection,” Optica 4(11), 1373–1381 (2017).
[Crossref]

C. Roider, R. Heintzmann, R. Piestun, and A. Jesacher, “Deconvolution approach for 3D scanning microscopy with helical phase engineering,” Opt. Express 24(14), 15456–15467 (2016).
[Crossref] [PubMed]

A. Jesacher, M. Ritschmarte, and R. Piestun, “Three-dimensional information from two-dimensional scans: a scanning microscope with postacquisition refocusing capability,” Optica 2(3), 210–213 (2015).
[Crossref]

G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, “Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE),” Opt. Express 20(24), 26681–26695 (2012).
[Crossref] [PubMed]

G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express 2(11), 3010–3020 (2011).
[Crossref] [PubMed]

G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett. 35(19), 3306–3308 (2010).
[Crossref] [PubMed]

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

S. R. P. Pavani and R. Piestun, “High-efficiency rotating point spread functions,” Opt. Express 16(5), 3484–3489 (2008).
[Crossref] [PubMed]

Quirin, S.

Richardson, W. H.

Ritschmarte, M.

Ritsch-Marte, M.

Roider, C.

Sheppard, C. J. R.

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80(2), 53–54 (1988).

Shroff, H.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Stallinga, S.

Temprine, K.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Wang, Z.

Yan, S.

Yao, B.

York, A. G.

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Zhou, X.

Appl. Phys. Lett. (1)

S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95(2), 021103 (2009).
[Crossref]

Biomed. Opt. Express (2)

J. Opt. Soc. Am. (1)

Nat. Methods (1)

A. G. York, S. H. Parekh, D. Dalle Nogare, R. S. Fischer, K. Temprine, M. Mione, A. B. Chitnis, C. A. Combs, and H. Shroff, “Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy,” Nat. Methods 9(7), 749–754 (2012).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Optica (2)

Optik (Stuttg.) (1)

C. J. R. Sheppard, “Super-resolution in confocal imaging,” Optik (Stuttg.) 80(2), 53–54 (1988).

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Other (1)

T. Wilson, Confocal Microscopy (Academic, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical configuration of multifocal structured illumination microscopy with helical phase engineering (MSIMH).
Fig. 2
Fig. 2 (a) Phase distribution of double helix (DH) phase mask. (b) Intensity distribution of the DH point spread function (DH-PSF) at different positions along Z-axis. (c) Relationship between the two lobe rotation angles of the DH-PSF and position of Z-axis.
Fig. 3
Fig. 3 (a) Scanning pattern of digital micromirror device (DMD). (b) The fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane. (c) The fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane with double helix (DH) phase mask.
Fig. 4
Fig. 4 (a) Single set of raw images. (b) Application of digital pinholes around each double helix point spread function (DH-PSF). (c) Deconvolution of DH-PSF in (b) to conventional PSF. (d) Resultant image after pixel reassignment.
Fig. 5
Fig. 5 (a) Fluorescent bead image obtained via wide-field microscopy (b) Fluorescent bead image obtained by multifocal structured illumination microscopy with helical phase engineering (MSIMH). (c) Magnified view of areas of interest corresponding to the box region in (a) and (b).
Fig. 6
Fig. 6 (a) Wide-field image of mitochondria at z = 0 μm. (b) Wide-field image of mitochondrion at z = −1 μm. (c) Volumetric image obtained via multifocal structured illumination microscopy with helical phase engineering (MSIMH) at z = 0 μm. The MSIMH volumetric image was generated from 780 raw images, each acquired in 8 ms, for a volumetric acquisition time of 6 s.
Fig. 7
Fig. 7 Resolution and contrast enhancement in multifocal structured illumination microscopy with helical phase engineering (MSIMH). (a) Wide-field image of F-actin, (b) deconvoluted wide-field image(c) pin-holed and deconvoluted image, (d) MSIMH image. (e, 1 to 4) Magnification of white box region in (a), (b), (c) and (d). (f, 5 to 8) Magnification of yellow box region in (a), (b), (c) and (d). (g) Plots of intensity along the colored dashed lines in (e). (h) Plots of intensity along the colored lines in (f). The FWHM values are: wide-field, 356 nm; deconvoluted wide-field, 288 nm; pin-holed and deconvoluted image 280 nm; and MSIMH, 194 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I sub (x)= [ ( ρ(x) h 1 (x) ) h 2 (x) ]SP( x ).

Metrics