Abstract

Waveguide-integrated plasmonics is a growing field with many innovative concepts and demonstrated devices in the visible and near-infrared. Here, we extend this body of work to the mid-infrared for the application of surface-enhanced infrared absorption (SEIRA), a spectroscopic method to probe molecular vibrations in small volumes and thin films. Built atop a silicon-on-insulator (SOI) waveguide platform, two key plasmonic structures useful for SEIRA are examined using computational modeling: gold nanorods and coaxial nanoapertures. We find resonance dips of 90% in near diffraction-limited areas due to arrays of our structures and up to 50% from a single resonator. Each of the structures is evaluated using the simulated SEIRA signal from poly(methyl methacrylate) and an octadecanethiol self-assembled monolayer. The platforms we present allow for a compact, on-chip SEIRA sensing system with highly efficient waveguide coupling in the mid-IR.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy

Wei Wei, Na Chen, Jinpeng Nong, Guilian Lan, Wei Wang, Juemin Yi, and Linlong Tang
Opt. Express 26(13) 16903-16916 (2018)

Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser

Anton Hasenkampf, Niels Kröger, Arthur Schönhals, Wolfgang Petrich, and Annemarie Pucci
Opt. Express 23(5) 5670-5680 (2015)

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
    [Crossref]
  4. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  5. M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
    [Crossref] [PubMed]
  6. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21(10), 11839–11851 (2013).
    [Crossref] [PubMed]
  7. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
    [Crossref] [PubMed]
  8. J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
    [Crossref]
  9. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  10. M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
    [Crossref] [PubMed]
  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  12. N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
    [Crossref]
  13. C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
    [Crossref] [PubMed]
  14. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
    [Crossref] [PubMed]
  15. S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
    [Crossref]
  16. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  17. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
    [Crossref] [PubMed]
  18. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [Crossref]
  19. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
    [Crossref]
  20. M. Osawa, “Surface-enhanced infrared absorption,” Top. Appl. Phys. 81, 163–187 (2001).
    [Crossref]
  21. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [Crossref] [PubMed]
  22. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
    [Crossref] [PubMed]
  23. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  24. X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
    [Crossref] [PubMed]
  25. L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
    [Crossref] [PubMed]
  26. Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
    [Crossref] [PubMed]
  27. D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
    [Crossref] [PubMed]
  28. D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
    [Crossref] [PubMed]
  29. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
    [Crossref]
  30. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
    [Crossref] [PubMed]
  31. S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
    [Crossref] [PubMed]
  32. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
    [Crossref] [PubMed]
  33. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
    [Crossref]
  34. R. Gordon, A. I. K. Choudhury, and T. Lu, “Gap plasmon mode of eccentric coaxial metal waveguide,” Opt. Express 17(7), 5311–5320 (2009).
    [Crossref] [PubMed]
  35. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
    [Crossref]
  36. D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
    [Crossref]
  37. M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. Lett. 76, 245109 (2007).
  38. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
    [Crossref]
  39. A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
    [Crossref] [PubMed]
  40. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  41. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
    [Crossref] [PubMed]
  42. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
    [Crossref]
  43. O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
    [Crossref] [PubMed]
  44. A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
    [Crossref] [PubMed]
  45. D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
    [Crossref] [PubMed]
  46. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
    [Crossref]
  47. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  48. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  49. R. T. Graf, J. L. Koenig, and H. Ishida, “Optical constant determination of thin polymer films in the infrared,” Appl. Spectrosc. 39(3), 405–408 (1985).
    [Crossref]
  50. Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
    [Crossref] [PubMed]

2018 (2)

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

2017 (5)

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications,” Photon. Res. 5(5), 417–430 (2017).
[Crossref]

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

2016 (6)

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
[Crossref] [PubMed]

A. Espinosa-Soria, A. Griol, and A. Martínez, “Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps,” Opt. Express 24(9), 9592–9601 (2016).
[Crossref] [PubMed]

2015 (6)

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

2014 (3)

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

2013 (4)

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21(10), 11839–11851 (2013).
[Crossref] [PubMed]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

2012 (5)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express 20(16), 17402–17410 (2012).
[Crossref] [PubMed]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

2010 (2)

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[Crossref]

2009 (4)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

R. Gordon, A. I. K. Choudhury, and T. Lu, “Gap plasmon mode of eccentric coaxial metal waveguide,” Opt. Express 17(7), 5311–5320 (2009).
[Crossref] [PubMed]

2007 (1)

M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. Lett. 76, 245109 (2007).

2006 (3)

S. M. Orbons and A. Roberts, “Resonance and extraordinary transmission in annular aperture arrays,” Opt. Express 14(26), 12623–12628 (2006).
[Crossref] [PubMed]

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

2005 (2)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

2003 (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

2001 (1)

M. Osawa, “Surface-enhanced infrared absorption,” Top. Appl. Phys. 81, 163–187 (2001).
[Crossref]

1985 (1)

Aassime, A.

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ahn, J. S.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Alabastri, A.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Aleksandrova, A.

Alonso-González, P.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Altug, H.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Alù, A.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Amirtharaj, P. M.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Arzubiaga, L.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Atwater, H. A.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Baets, R.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Barbillon, G.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartenlian, B.

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Burgos, S. P.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Caldwell, J. D.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Carretero-Palacios, S.

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Casanova, F.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

Cerjan, B.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Chandler-Horowitz, D.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Chashnikova, M.

Chen, C.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Chen, X.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21(10), 11839–11851 (2013).
[Crossref] [PubMed]

Choi, H.-K.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Choudhury, A. I. K.

Chuvilin, A.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Ciracì, C.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Dagens, B.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

de Waele, R.

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dhakal, A.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Dichtl, P.

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

Dionne, J. A.

Dong, B.

Dong, L.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Ebbesen, T. W.

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Engheta, N.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. Lett. 76, 245109 (2007).

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Ertsgaard, C. T.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Espinosa-Soria, A.

Etezadi, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

Fakonas, J. S.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Fan, S.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Fedosenko, O.

Février, M.

Flores, Y.

Gastelum, S.

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Glembocki, O. J.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gogol, P.

Gordon, R.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[Crossref]

R. Gordon, A. I. K. Choudhury, and T. Lu, “Gap plasmon mode of eccentric coaxial metal waveguide,” Opt. Express 17(7), 5311–5320 (2009).
[Crossref] [PubMed]

Graf, R. T.

Griol, A.

Gruska, B.

Gurunatha, K. L.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Halas, N. J.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Hengstler, D.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hess, P.

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Hu, J.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Hu, T.

Hu, Z. G.

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hueso, L. E.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Im, H.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Ishida, H.

Jeon, H.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

Jo, M.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

John-Herpin, A.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

Johnson, T. W.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Kelaita, Y. A.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kim, D.-S.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Kim, S.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

Kim, Y. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Kippenberg, T. J.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Kischkat, J.

Klinkmüller, M.

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Koenig, J. L.

Koester, S. J.

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Lafone, L.

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

Law, S.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Le Thomas, N.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Lee, C.

Lee, H.

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Li, D.

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[Crossref]

Li, H.

Li, M.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21(10), 11839–11851 (2013).
[Crossref] [PubMed]

Limaj, O.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

Lin, H.

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

Lindquist, N. C.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Liow, T.-Y.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Lo, G.-Q.

Lourtioz, J.-M.

Lu, T.

Luo, X.

Machulik, S.

Maier, S. A.

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Martínez, A.

Martín-Moreno, L.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Masselink, W. T.

Matson, J.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

Mégy, R.

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Mohr, D. A.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Monastyrskyi, G.

Neubrech, F.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Nguyen, N.-C.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Nielsen, M. P.

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Noh, J. W.

Nordlander, P.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Oh, S.-H.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Orbons, S. M.

Osawa, M.

M. Osawa, “Surface-enhanced infrared absorption,” Top. Appl. Phys. 81, 163–187 (2001).
[Crossref]

Oulton, R. F.

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Park, H.-R.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, N.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Patzner, P.

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

Pelton, M.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Peng, R.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

Peraire, J.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Peters, S.

Peyskens, F.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Piao, X.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Podolskiy, V.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Polman, A.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

Prunici, P.

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Rahmani, M.

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Rakovich, A.

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Roberts, A.

Rodrigo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Saleh, A. A. E.

Schnell, M.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Semtsiv, M.

Sendner, M.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Seok, T. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Shaver, J.

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Sheikhoelislami, S.

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shi, X.

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

Sidiropoulos, T. P. H.

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. Lett. 76, 245109 (2007).

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Smith, D. R.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

Song, J.

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Thijssen, R.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Tseng, M. L.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Van Dorpe, P.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Verhagen, E.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Vidal-Codina, F.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

Vogt, J.

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wasserman, D.

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

Wittenberg, N. J.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yablonovitch, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yang, X.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, D.

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

Youngblood, N.

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, C.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Zhou, L.

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

ACS Nano (2)

Y. Chen, H. Lin, J. Hu, and M. Li, “Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing,” ACS Nano 8(7), 6955–6961 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, “Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods,” ACS Photonics 2(10), 1489–1497 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

Appl. Spectrosc. (1)

Chem. Rev. (1)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117(7), 5110–5145 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

J. Phys. Chem. B (1)

Z. G. Hu, P. Prunici, P. Patzner, and P. Hess, “Infrared spectroscopic ellipsometry of n-alkylthiol (C5-C18) self-assembled monolayers on gold,” J. Phys. Chem. B 110(30), 14824–14831 (2006).
[Crossref] [PubMed]

Nano Lett. (12)

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16(2), 1502–1508 (2016).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, and M. Li, “Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics,” Nano Lett. 17(2), 985–991 (2017).
[Crossref] [PubMed]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

M. P. Nielsen, L. Lafone, A. Rakovich, T. P. H. Sidiropoulos, M. Rahmani, S. A. Maier, and R. F. Oulton, “Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform,” Nano Lett. 16(2), 1410–1414 (2016).
[Crossref] [PubMed]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

L. Dong, X. Yang, C. Zhang, B. Cerjan, L. Zhou, M. L. Tseng, Y. Zhang, A. Alabastri, P. Nordlander, and N. J. Halas, “Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy,” Nano Lett. 17(9), 5768–5774 (2017).
[Crossref] [PubMed]

R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9(8), 2832–2837 (2009).
[Crossref] [PubMed]

D. Yoo, N.-C. Nguyen, L. Martín-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

D. Yoo, D. A. Mohr, F. Vidal-Codina, A. John-Herpin, M. Jo, S. Kim, J. Matson, J. D. Caldwell, H. Jeon, N.-C. Nguyen, L. Martín-Moreno, J. Peraire, H. Altug, and S.-H. Oh, “High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps,” Nano Lett. 18(3), 1930–1936 (2018).
[Crossref] [PubMed]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15(2), 1272–1280 (2015).
[Crossref] [PubMed]

Nanophotonics (2)

S. Law, V. Podolskiy, and D. Wasserman, “Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics,” Nanophotonics 2(2), 103–130 (2013).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Commun. (1)

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Nat. Photonics (5)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

J. S. Fakonas, H. Lee, Y. A. Kelaita, and H. A. Atwater, “Two-plasmon quantum interference,” Nat. Photonics 8(4), 317–320 (2014).
[Crossref]

H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

N. Youngblood, C. Chen, S. J. Koester, and M. Li, “Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current,” Nat. Photonics 9(4), 247–252 (2015).
[Crossref]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[Crossref]

Opt. Express (6)

Photon. Res. (1)

Phys. Rev. A (1)

D. Li and R. Gordon, “Electromagnetic transmission resonances for a single annular aperture in a metal plate,” Phys. Rev. A 82(4), 041801 (2010).
[Crossref]

Phys. Rev. B (3)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Phys. Rev. Lett. (2)

M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. Lett. 76, 245109 (2007).

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94(3), 033902 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[Crossref] [PubMed]

Science (1)

M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, “Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing,” Science 358(6367), 1179–1181 (2017).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

M. Osawa, “Surface-enhanced infrared absorption,” Top. Appl. Phys. 81, 163–187 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics of the proposed devices for MIR waveguides integrated with plasmonics. (a) Nanorod pairs coupled together for high-efficiency coupling with minimal off-resonance scattering. (b) Coaxial nanoaperture embedded in a gold pad atop the waveguide for high coupling with a single resonator.
Fig. 2
Fig. 2 Nanorod-pair arrays integrated on a Si waveguide designed for the MIR. (a) Waveguide transmission of nanorod-pair arrays with different number of elements. Increasing the number of nanorod pairs increases the coupling obtained from the device. (b) Electric field distribution in a plane normal to the direction of waveguide propagation. (c) Same as (b), except in a plane taken at the top surface of the waveguide. Field enhancements are similar to those observed for far-field array devices (Fig. 7). The nanorods have dimensions of 500 nm × 275 nm × 100 nm (L × W × H) with a radius of curvature of 50 nm for corners pictured in (b). The nanorod intra-pair spacing is 500 nm with a periodicity of 475 nm.
Fig. 3
Fig. 3 Coaxial apertures in a 3 µm long gold pad integrated on a MIR waveguide. (a) Comparison, between one, two, and three apertures placed in a serial array configuration atop the waveguide. (b) Electric field distribution taken at a plane halfway through the gold pad for the three-coaxial aperture device, demonstrating the highest coupling for the middle aperture. (c) Electric field distribution taken at a plane normal to the direction of waveguide propagation for the device with one aperture, demonstrating the relatively high and uniform field enhancement available in this device. (d) The magnetic field distribution of the device in (c), taken at a plane along the direction of propagation. The coaxial nanoapertures presented here are made in an 80 nm thick gold pad (3 µm long) with a 100 nm tall center conductor and based on the fabrication scheme presented by Yoo, et al. [27], leaving a residual 20 nm spacer layer made of alumina beneath the gold pad. The inner radii of the apertures are 225 nm with a 20 nm gap and period of 650 nm between devices.
Fig. 4
Fig. 4 (a) Simulated SEIRA of PMMA and ODT coated on the two waveguide-integrated plasmonic structures (b) and corresponding difference signals calculated from the reflection spectra. The solid lines in (a) correspond to full PMMA and ODT dielectric functions, while the dashed lines correspond to lossless dielectric functions. The spectra in (b) were calculated by subtracting the lossy spectra from the lossless spectra and then normalizing to the lossless spectra.
Fig. 5
Fig. 5 Plasmonic resonators with differing geometrical parameters can be fabricated atop a single MIR waveguide leading to broadband resonances, useful for probing a larger spectral area for SEIRA. (a) Resonance due to only three separate coaxial nanoapertures placed in a serial array made in one Au pad acting as the cladding. Associated field maps of the absorption dips are shown to the right. (b) Resonance dip from an array of five nanorod-pair triplets on the same waveguide. Scale bar in (a) is 200 nm. In both (a) and (b), the single reflection spectra presented have the same axis scale as the transmission spectra.
Fig. 6
Fig. 6 (a) Transmission spectra of individual nanorods and arrays of nanorods, along with nanorod-pair spectra. (b) Spectra of an individual nanorod on a waveguide with varied length. (c) Spectra of a single nanorod-pair with varying distance between the ends of the nanorods. (d) The transmission spectra of an array of three nanorod-pairs with varying periodicity.
Fig. 7
Fig. 7 (a) Spectra of an array version of the nanorod structure used. Here, the rod length is 500 nm, the width is 275 nm, the period in the x-direction is 1µm, and the period in the y-direction is 475 nm. (b) Corresponding electric field map exhibiting similar field enhancement as the waveguide-integrated device.
Fig. 8
Fig. 8 Spectra of individual coaxial nanoapertures with (a) three different radii and (b) four different gap widths. (c) Arrays of three coaxial nanoapertures with different periods. (d) Transmission spectra with only the gold pad present and no coaxial nanoaperture. The width of the gold pad is varied between 1 and 1.6 µm.

Metrics